IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v241y2024ics0165176524003227.html
   My bibliography  Save this article

Calibrating doubly-robust estimators with unbalanced treatment assignment

Author

Listed:
  • Ballinari, Daniele

Abstract

Machine learning methods, particularly the double machine learning (DML) estimator (Chernozhukov et al., 2018), are increasingly popular for the estimation of the average treatment effect (ATE). However, datasets often exhibit unbalanced treatment assignments where only a few observations are treated, leading to unstable propensity score estimations. We propose a simple extension of the DML estimator which undersamples data for propensity score modeling and calibrates scores to match the original distribution. The paper provides theoretical results showing that the estimator retains the DML estimator’s asymptotic properties. A simulation study illustrates the finite sample performance of the estimator.

Suggested Citation

  • Ballinari, Daniele, 2024. "Calibrating doubly-robust estimators with unbalanced treatment assignment," Economics Letters, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:ecolet:v:241:y:2024:i:c:s0165176524003227
    DOI: 10.1016/j.econlet.2024.111838
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176524003227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2024.111838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniele Ballinari & Nora Bearth, 2024. "Improving the Finite Sample Performance of Double/Debiased Machine Learning with Propensity Score Calibration," Papers 2409.04874, arXiv.org.

    More about this item

    Keywords

    Causal machine learning; Double machine learning; Average treatment effect; Unbalanced treatment assignment; Undersampling;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:241:y:2024:i:c:s0165176524003227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.