IDEAS home Printed from https://ideas.repec.org/b/zbw/zewexp/222378.html
   My bibliography  Save this book

An analysis of selected labor market outcomes of college dropouts in Germany: A machine learning estimation approach. Research report

Author

Listed:
  • Heigle, Julia
  • Pfeiffer, Friedhelm

Abstract

[Introduction ...] The results indicate that college dropouts aged between 25 and 65 do, in expectation, not experience significant losses in terms of hourly wages. Further-more, in terms of expectations, college dropouts end up in occupations with higher occupational prestige scores relative to individuals with a college en-trance qualification but no college experience. There seem to be no significant differences in employment status between the two groups. A further descriptive analysis shows that college dropouts are more likely to end up in smaller firms. The rest of the paper is structured as follows. Section 2 reviews the relevant literature on college dropout. Section 3 describes the data set used for the anal-ysis. Section 4 discusses the integration of machine learning techniques into the causal inference framework. Section 5 introduces the method used for treat-ment effect estimation. In Section 6 treatment effect estimation results are pre-sented for hourly wages and occupational prestige scores, and a multinomial logit model is estimated to investigate the relationship between employment and treatment group status. Section 7 concludes by critically discussing the empirical estimation strategy.

Suggested Citation

  • Heigle, Julia & Pfeiffer, Friedhelm, 2019. "An analysis of selected labor market outcomes of college dropouts in Germany: A machine learning estimation approach. Research report," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 222378, June.
  • Handle: RePEc:zbw:zewexp:222378
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/222378/1/1703003454.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    3. repec:iza:izawol:journl:y:2015:p:182 is not listed on IDEAS
    4. Card, David, 1999. "The causal effect of education on earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 30, pages 1801-1863, Elsevier.
    5. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    6. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    7. Gary S. Becker, 1962. "Investment in Human Capital: A Theoretical Analysis," NBER Chapters, in: Investment in Human Beings, pages 9-49, National Bureau of Economic Research, Inc.
    8. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    9. Sylke V. Schnepf, 2015. "University dropouts and labor market success," IZA World of Labor, Institute of Labor Economics (IZA), pages 182-182, September.
    10. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    11. Aina, Carmen & Baici, Eliana & Casalone, Giorgia & Pastore, Francesco, 2018. "The economics of university dropouts and delayed graduation: a survey," GLO Discussion Paper Series 189, Global Labor Organization (GLO).
    12. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    13. Glynn, Adam N. & Quinn, Kevin M., 2010. "An Introduction to the Augmented Inverse Propensity Weighted Estimator," Political Analysis, Cambridge University Press, vol. 18(1), pages 36-56, January.
    14. Arrow, Kenneth J., 1973. "Higher education as a filter," Journal of Public Economics, Elsevier, vol. 2(3), pages 193-216, July.
    15. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    16. Grubb, W. Norton, 2002. "Learning and earning in the middle, part I: national studies of pre-baccalaureate education," Economics of Education Review, Elsevier, vol. 21(4), pages 299-321, August.
    17. Yona Rubinstein & James J. Heckman, 2001. "The Importance of Noncognitive Skills: Lessons from the GED Testing Program," American Economic Review, American Economic Association, vol. 91(2), pages 145-149, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heigle, Julia & Pfeiffer, Friedhelm, 2020. "Langfristige Wirkungen eines nicht abgeschlossenen Studiums auf individuelle Arbeitsmarktergebnisse und die allgemeine Lebenszufriedenheit," ZEW Discussion Papers 20-004, ZEW - Leibniz Centre for European Economic Research.
    2. Neugebauer, Martin & Daniel, Annabell, 2021. "Higher Education Non-Completion, Employers, and Labor Market Integration: Experimental Evidence," SocArXiv evm74, Center for Open Science.
    3. McNamara, Sarah, 2020. "Returns to higher education and dropouts: A double machine learning approach," ZEW Discussion Papers 20-084, ZEW - Leibniz Centre for European Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    2. Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024. "Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations," Journal of Econometrics, Elsevier, vol. 240(2).
    3. McNamara, Sarah, 2020. "Returns to higher education and dropouts: A double machine learning approach," ZEW Discussion Papers 20-084, ZEW - Leibniz Centre for European Economic Research.
    4. Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.
    5. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    6. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    7. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    8. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    9. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
    10. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    11. Dongcheng Zhang & Kunpeng Zhang, 2020. "Weighting-Based Treatment Effect Estimation via Distribution Learning," Papers 2012.13805, arXiv.org, revised May 2023.
    12. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    13. Heigle, Julia & Pfeiffer, Friedhelm, 2020. "Langfristige Wirkungen eines nicht abgeschlossenen Studiums auf individuelle Arbeitsmarktergebnisse und die allgemeine Lebenszufriedenheit," ZEW Discussion Papers 20-004, ZEW - Leibniz Centre for European Economic Research.
    14. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    16. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    17. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    18. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    19. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    20. Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389.rdf, CPB Netherlands Bureau for Economic Policy Analysis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewexp:222378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.