IDEAS home Printed from https://ideas.repec.org/r/aea/aecrev/v106y2016i5p124-27.html
   My bibliography  Save this item

Productivity and Selection of Human Capital with Machine Learning

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
  2. Michael Allan Ribers & Hannes Ullrich, 2020. "Machine Predictions and Human Decisions with Variation in Payoffs and Skills," Discussion Papers of DIW Berlin 1911, DIW Berlin, German Institute for Economic Research.
  3. Jing Wu & Zhaocheng Zhang & Sean X. Zhou, 2022. "Credit Rating Prediction Through Supply Chains: A Machine Learning Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1613-1629, April.
  4. Bauer, Kevin & Gill, Andrej, 2021. "Mirror, mirror on the wall: Machine predictions and self-fulfilling prophecies," SAFE Working Paper Series 313, Leibniz Institute for Financial Research SAFE.
  5. McKenzie, David & Sansone, Dario, 2019. "Predicting entrepreneurial success is hard: Evidence from a business plan competition in Nigeria," Journal of Development Economics, Elsevier, vol. 141(C).
  6. David Almog & Romain Gauriot & Lionel Page & Daniel Martin, 2024. "AI Oversight and Human Mistakes: Evidence from Centre Court," Papers 2401.16754, arXiv.org, revised Feb 2024.
  7. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
  8. Mallory Avery & Andreas Leibbrandt & Joseph Vecci, 2023. "Does Artificial Intelligence Help or Hurt Gender Diversity? Evidence from Two Field Experiments on Recruitment in Tech," Monash Economics Working Papers 2023-09, Monash University, Department of Economics.
  9. Dargnies, Marie-Pierre & Hakimov, Rustamdjan & Kübler, Dorothea, 2022. "Aversion to hiring algorithms: Transparency, gender profiling, and self-confidence," Discussion Papers, Research Unit: Market Behavior SP II 2022-202, WZB Berlin Social Science Center.
  10. Dario Sansone & Anna Zhu, 2023. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
  11. Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
  12. Yongtong Shao & Tao Xiong & Minghao Li & Dermot Hayes & Wendong Zhang & Wei Xie, 2021. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1082-1098, May.
  13. Ginevra Buratti & Alessio D'Ignazio, 2023. "Improving the effectiveness of financial education programs. A targeting approach," Questioni di Economia e Finanza (Occasional Papers) 765, Bank of Italy, Economic Research and International Relations Area.
  14. Pauline Affeldt, 2019. "EU Merger Policy Predictability Using Random Forests," Discussion Papers of DIW Berlin 1800, DIW Berlin, German Institute for Economic Research.
  15. Anthony Niblett, 2018. "Regulatory Reform in Ontario: Machine Learning and Regulation," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 507, March.
  16. Ernst Fehr & Thomas Epper & Julien Senn, 2023. "The Fundamental Properties, Stability and Predictive Power of Distributional Preferences," Working Papers 2023-iRisk-07, IESEG School of Management.
  17. McKenzie, David & Sansone, Dario, 2017. "Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria," CEPR Discussion Papers 12523, C.E.P.R. Discussion Papers.
  18. Bauer, Kevin & Pfeuffer, Nicolas & Abdel-Karim, Benjamin M. & Hinz, Oliver & Kosfeld, Michael, 2020. "The terminator of social welfare? The economic consequences of algorithmic discrimination," SAFE Working Paper Series 287, Leibniz Institute for Financial Research SAFE.
  19. Andres, Antonio Rodriguez & Otero, Abraham & Amavilah, Voxi Heinrich, 2021. "Using Deep Learning Neural Networks to Predict the Knowledge Economy Index for Developing and Emerging Economies," MPRA Paper 109137, University Library of Munich, Germany.
  20. Michael A. Ribers & Hannes Ullrich, 2019. "Battling Antibiotic Resistance: Can Machine Learning Improve Prescribing?," Discussion Papers of DIW Berlin 1803, DIW Berlin, German Institute for Economic Research.
  21. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
  22. Monica Andini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Viola Salvestrini, 2017. "Targeting policy-compliers with machine learning: an application to a tax rebate programme in Italy," Temi di discussione (Economic working papers) 1158, Bank of Italy, Economic Research and International Relations Area.
  23. Stephanie Houle & Ryan Macdonald, 2023. "Identifying Nascent High-Growth Firms Using Machine Learning," Staff Working Papers 23-53, Bank of Canada.
  24. Jason Anastasopoulos & George J. Borjas & Gavin G. Cook & Michael Lachanski, 2018. "Job Vacancies, the Beveridge Curve, and Supply Shocks: The Frequency and Content of Help-Wanted Ads in Pre- and Post-Mariel Miami," NBER Working Papers 24580, National Bureau of Economic Research, Inc.
  25. Alina Köchling & Marius Claus Wehner, 2020. "Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 795-848, November.
  26. Daniel W. Elfenbein & Adina D. Sterling, 2018. "(When) Is Hiring Strategic? Human Capital Acquisition in the Age of Algorithms," Strategy Science, INFORMS, vol. 3(4), pages 668-682, December.
  27. de Blasio, Guido & D'Ignazio, Alessio & Letta, Marco, 2022. "Gotham city. Predicting ‘corrupted’ municipalities with machine learning," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
  28. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
  29. Daojun Li & Haiqin Wang & Juan Wang, 2024. "Artificial Intelligence and Technological Innovation: Evidence from China’s Strategic Emerging Industries," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
  30. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
  31. Christopher Neilson & Sebastian Gallegos & Franco Calle, 2019. "Screening and Recruiting Talent At Teacher Colleges Using Pre-College Academic Achievement," Working Papers 636, Princeton University, Department of Economics, Industrial Relations Section..
  32. Artemisa Zaragoza-Ibarra & Gerardo G. Alfaro-Calderón & Víctor G. Alfaro-García & Fernando Ornelas-Tellez & Rodrigo Gómez-Monge, 2021. "A machine learning model of national competitiveness with regional statistics of public expenditure," Computational and Mathematical Organization Theory, Springer, vol. 27(4), pages 451-468, December.
  33. Ballestar, María Teresa & Doncel, Luis Miguel & Sainz, Jorge & Ortigosa-Blanch, Arturo, 2019. "A novel machine learning approach for evaluation of public policies: An application in relation to the performance of university researchers," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
  34. Falco J. Bargagli Stoffi & Kenneth De Beckker & Joana E. Maldonado & Kristof De Witte, 2021. "Assessing Sensitivity of Machine Learning Predictions.A Novel Toolbox with an Application to Financial Literacy," Papers 2102.04382, arXiv.org.
  35. Sun, Chuanwang & Xu, Mengjie & Wang, Bo, 2024. "Deep learning: Spatiotemporal impact of digital economy on energy productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  36. Sean Tanner & Jenna Terrell & Emily Vislosky & Jonathan Gellar & Brian Gill, "undated". "Predicting Early Fall Student Enrollment in the School District of Philadelphia," Mathematica Policy Research Reports 63a18bf538bd41f98d72ff91d, Mathematica Policy Research.
  37. Michael Allan Ribers & Hannes Ullrich, 2023. "Machine learning and physician prescribing: a path to reduced antibiotic use," Berlin School of Economics Discussion Papers 0019, Berlin School of Economics.
  38. Huang, Shan & Ribers, Michael Allan & Ullrich, Hannes, 2022. "Assessing the value of data for prediction policies: The case of antibiotic prescribing," Economics Letters, Elsevier, vol. 213(C).
  39. Hannes Ullrich & Michael Allan Ribers, 2023. "Machine predictions and human decisions with variation in payoffs and skill: the case of antibiotic prescribing," Berlin School of Economics Discussion Papers 0027, Berlin School of Economics.
  40. Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
  41. Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022. "Machine learning in the service of policy targeting: The case of public credit guarantees," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
  42. Anja Garbely & Elias Steiner, 2023. "Understanding compliance with voluntary sustainability standards: a machine learning approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11209-11239, October.
  43. Chang, Qing & Wu, Mengtao & Zhang, Longtian, 2024. "Endogenous growth and human capital accumulation in a data economy," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 298-312.
  44. Fernando Saltiel & Cody Tuttle, 2023. "Business Cycles and Police Hires," Working Papers 288, Red Nacional de Investigadores en Economía (RedNIE).
  45. Runshan Fu & Yan Huang & Param Vir Singh, 2020. "Crowd, Lending, Machine, and Bias," Papers 2008.04068, arXiv.org.
  46. Shan Huang & Michael Allan Ribers & Hannes Ullrich, 2021. "The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing," Discussion Papers of DIW Berlin 1939, DIW Berlin, German Institute for Economic Research.
  47. Juan Carlos Perdomo, 2023. "The Relative Value of Prediction in Algorithmic Decision Making," Papers 2312.08511, arXiv.org, revised May 2024.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.