Using Deep Learning Neural Networks to Predict the Knowledge Economy Index for Developing and Emerging Economies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Aaron Chalfin & Oren Danieli & Andrew Hillis & Zubin Jelveh & Michael Luca & Jens Ludwig & Sendhil Mullainathan, 2016. "Productivity and Selection of Human Capital with Machine Learning," American Economic Review, American Economic Association, vol. 106(5), pages 124-127, May.
- Judith Sutz, 2012. "Measuring innovation in developing countries: some suggestions to achieve more accurate and useful indicators," International Journal of Technological Learning, Innovation and Development, Inderscience Enterprises Ltd, vol. 5(1/2), pages 40-57.
- Archibugi, Daniele & Coco, Alberto, 2005. "Measuring technological capabilities at the country level: A survey and a menu for choice," Research Policy, Elsevier, vol. 34(2), pages 175-194, March.
- Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993.
"Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
- Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1992. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," NBER Working Papers 3993, National Bureau of Economic Research, Inc.
- Jaffe, A.B. & Trajtenberg, M., 1992. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," Papers 14-92, Tel Aviv.
- Archibugi, Daniele & Coco, Alberto, 2004.
"A New Indicator of Technological Capabilities for Developed and Developing Countries (ArCo),"
World Development, Elsevier, vol. 32(4), pages 629-654, April.
- Daniele Archibugi & Alberto Coco, 2004. "A New Indicator of Technological Capabilities for Developed and Developing Countries (ArCo)," SPRU Working Paper Series 111, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Daniele Archibugi & Alberto Coco, 2004. "A New Indicator of Technological Capabilities for Developed and Developing Countries (ArCo)," CEIS Research Paper 44, Tor Vergata University, CEIS.
- Greg Tkacz & Sarah Hu, 1999. "Forecasting GDP Growth Using Artificial Neural Networks," Staff Working Papers 99-3, Bank of Canada.
- Norman R. Swanson & Halbert White, 1997.
"A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks,"
The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
- Norman R. Swanson & Halbert White, 1995. "A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Macroeconomics 9503004, University Library of Munich, Germany.
- Swanson, N.R. & White, H., 1995. "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Papers 04-95-12, Pennsylvania State - Department of Economics.
- Al Shami, Ahmad & Lotfi, Ahmad & Coleman, Simeon & Dostál, Petr, 2015. "Unified knowledge based economy hybrid forecasting," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 107-123.
- McDonough, Ian K. & Millimet, Daniel L., 2017.
"Missing data, imputation, and endogeneity,"
Journal of Econometrics, Elsevier, vol. 199(2), pages 141-155.
- McDonough, Ian K. & Millimet, Daniel L., 2016. "Missing Data, Imputation, and Endogeneity," IZA Discussion Papers 10402, Institute of Labor Economics (IZA).
- James Honaker & Gary King, 2010. "What to Do about Missing Values in Time‐Series Cross‐Section Data," American Journal of Political Science, John Wiley & Sons, vol. 54(2), pages 561-581, April.
- Balkrishna C. Rao, 2010. "On The Methodology For Quantifying Innovations," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 14(05), pages 823-839.
- Frank Neffke & Martin Henning & Ron Boschma, 2011.
"How Do Regions Diversify over Time? Industry Relatedness and the Development of New Growth Paths in Regions,"
Economic Geography, Clark University, vol. 87(3), pages 237-265, July.
- Frank Neffke & Martin Henning & Ron Boschma, 2011. "How Do Regions Diversify over Time? Industry Relatedness and the Development of New Growth Paths in Regions," Economic Geography, Taylor & Francis Journals, vol. 87(3), pages 237-265, July.
- Frank Neffke & Martin Henning & Martin Ron Boschma, 2009. "How do regions diversify over time? Industry relatedness and the development of new growth paths in regions," Papers in Evolutionary Economic Geography (PEEG) 0916, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Oct 2009.
- Blackburn, Keith & Forgues-Puccio, Gonzalo F., 2010.
"Financial liberalization, bureaucratic corruption and economic development,"
Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1321-1339, November.
- Keith Blackburn & Gonzalo F. Forgues-Puccio, 2005. "Financial Liberalisation, Bureaucratic Corruption and Economic Devlopment," Economics Discussion Paper Series 0531, Economics, The University of Manchester.
- Keith Blackburn & Gonzalo F. Forgues-Puccio, 2008. "Financial Liberalisation, Bureaucratic Corruption and Economic Development," Development Research Working Paper Series 06/2008, Institute for Advanced Development Studies.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Nabaz T. Khayyat & Jeong-Dong Lee, 2012. "A New Index Measure of Technological Capabilities for Developing Countries," TEMEP Discussion Papers 201291, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Jun 2012.
- Paul M. Romer, 1994. "The Origins of Endogenous Growth," Journal of Economic Perspectives, American Economic Association, vol. 8(1), pages 3-22, Winter.
- Sanna Ojanperä & Mark Graham & Matthew Zook, 2019. "The Digital Knowledge Economy Index: Mapping Content Production," Journal of Development Studies, Taylor & Francis Journals, vol. 55(12), pages 2626-2643, December.
- Cesar A. Hidalgo & Ricardo Hausmann, 2009.
"The Building Blocks of Economic Complexity,"
Papers
0909.3890, arXiv.org.
- Cesar A. Hidalgo & Ricardo Hausmann, 2009. "The Building Blocks of Economic Complexity," CID Working Papers 186, Center for International Development at Harvard University.
- Kinne, Jan & Lenz, David, 2019. "Predicting innovative firms using web mining and deep learning," ZEW Discussion Papers 19-001, ZEW - Leibniz Centre for European Economic Research.
- Stefano Breschi & Francesco Lissoni, 2004. "Knowledge networks from patent data: Methodological issues and research targets," KITeS Working Papers 150, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Jan 2004.
- Petr Hajek & Roberto Henriques, 2017. "Modelling innovation performance of European regions using multi-output neural networks," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-21, October.
- Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1.
- Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
- Tzafestas, S.G. & Dalianis, P.J. & Anthopoulos, G., 1996. "On the overtraining phenomenon of backpropagation neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 40(5), pages 507-521.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- C. A. Hidalgo & B. Klinger & A. -L. Barabasi & R. Hausmann, 2007. "The Product Space Conditions the Development of Nations," Papers 0708.2090, arXiv.org.
- Furman, Jeffrey L. & Porter, Michael E. & Stern, Scott, 2002. "The determinants of national innovative capacity," Research Policy, Elsevier, vol. 31(6), pages 899-933, August.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018.
"Human Decisions and Machine Predictions,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2017. "Human Decisions and Machine Predictions," NBER Working Papers 23180, National Bureau of Economic Research, Inc.
- Arrow, Kenneth J, 1969. "Classificatory Notes on the Production and Transmission of Technological Knowledge," American Economic Review, American Economic Association, vol. 59(2), pages 29-35, May.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Saleh Albeaik & Mary Kaltenberg & Mansour Alsaleh & Cesar A. Hidalgo, 2017. "Improving the Economic Complexity Index," Papers 1707.05826, arXiv.org, revised Jul 2017.
- McAdam, Peter & McNelis, Paul, 2005.
"Forecasting inflation with thick models and neural networks,"
Economic Modelling, Elsevier, vol. 22(5), pages 848-867, September.
- McAdam, Peter & McNelis, Paul, 2004. "Forecasting inflation with thick models and neural networks," Working Paper Series 352, European Central Bank.
- Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338.
- Parente, Stephen L & Prescott, Edward C, 1994. "Barriers to Technology Adoption and Development," Journal of Political Economy, University of Chicago Press, vol. 102(2), pages 298-321, April.
- Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
- J. Isaac Miller, 2007. "Cointegrating Regressions with Messy Regressors: Missingness, Mixed Frequency, and Measurement Error," Working Papers 0722, Department of Economics, University of Missouri, revised 15 Apr 2009.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Xinxin & Xu, Zeshui & Qin, Yong & Skare, Marinko, 2022. "Innovation, the knowledge economy, and green growth: Is knowledge-intensive growth really environmentally friendly?," Energy Economics, Elsevier, vol. 115(C).
- Graham, Byron & Bonner, Karen, 2024. "The role of institutions in early-stage entrepreneurship: An explainable artificial intelligence approach," Journal of Business Research, Elsevier, vol. 175(C).
- Ong, Ardvin Kester S. & Kurata, Yoshiki B. & Castro, Sophia Alessandra D.G. & De Leon, Jeanne Paulene B. & Dela Rosa, Hazel V. & Tomines, Alex Patricia J., 2022. "Factors influencing the acceptance of telemedicine in the Philippines," Technology in Society, Elsevier, vol. 70(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Voxi Heinrich Amavilah & Antonio Rodríguez Andrés, 2024. "Knowledge Economy and the Economic Performance of African Countries: A Seemingly Unrelated and Recursive Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 110-143, March.
- Voxi Heinrich Amavilah & Antonio Rodriguez Andres, 2022. "Knowledge Economy and the Economic Performance of African Countries: A Seemingly Unrelated and Recursive Approach," Working Papers 57, The German University in Cairo, Faculty of Management Technology.
- Yongtong Shao & Tao Xiong & Minghao Li & Dermot Hayes & Wendong Zhang & Wei Xie, 2021.
"China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach,"
American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1082-1098, May.
- Shao, Yongtong & Xiong, Tao & Li, Minghao & Hayes, Dermot & Zhang, Wendong & Xie, Wei, 2020. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," ISU General Staff Papers 202001010800001619, Iowa State University, Department of Economics.
- Yongtong Shao & Minghao Li & Dermot J. Hayes & Wendong Zhang & Tao Xiong & Wei Xie, 2020. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," Center for Agricultural and Rural Development (CARD) Publications 20-wp607, Center for Agricultural and Rural Development (CARD) at Iowa State University.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Kevin Kotze & Neil Rankin & Rulof P. Burger, 2022. "Big data forecasting of South African inflation," Working Papers 873, Economic Research Southern Africa.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Akash Malhotra, 2021. "A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 549-581, September.
- Tatiana de Macedo Nogueira Lima, 2022. "Documento de Trabalho 03/2022 - Aprendizado de máquina e antitruste," Documentos de Trabalho 2022030, Conselho Administrativo de Defesa Econômica (Cade), Departamento de Estudos Econômicos.
- de Blasio, Guido & D'Ignazio, Alessio & Letta, Marco, 2022. "Gotham city. Predicting ‘corrupted’ municipalities with machine learning," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Ajit Desai, 2023.
"Machine Learning for Economics Research: When What and How?,"
Papers
2304.00086, arXiv.org, revised Apr 2023.
- Ajit Desai, 2023. "Machine learning for economics research: when, what and how," Staff Analytical Notes 2023-16, Bank of Canada.
- Ajay Agrawal & Joshua S. Gans & Avi Goldfarb, 2019.
"Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction,"
Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 31-50, Spring.
- Ajay Agrawal & Joshua S. Gans & Avi Goldfarb, 2019. "Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction," NBER Working Papers 25619, National Bureau of Economic Research, Inc.
- Pinheiro, Flávio L. & Hartmann, Dominik & Boschma, Ron & Hidalgo, César A., 2022. "The time and frequency of unrelated diversification," Research Policy, Elsevier, vol. 51(8).
- Alessandra Garbero & Marco Letta, 2022. "Predicting household resilience with machine learning: preliminary cross-country tests," Empirical Economics, Springer, vol. 63(4), pages 2057-2070, October.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Colin Wessendorf & Alexander Kopka & Dirk Fornahl, 2021. "The impact of the six European Key Enabling Technologies (KETs) on regional knowledge creation," Papers in Evolutionary Economic Geography (PEEG) 2127, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Sep 2021.
- Lily Davies & Mark Kattenberg & Benedikt Vogt, 2023. "Predicting Firm Exits with Machine Learning: Implications for Selection into COVID-19 Support and Productivity Growth," CPB Discussion Paper 444, CPB Netherlands Bureau for Economic Policy Analysis.
- Feras A. Batarseh & Munisamy Gopinath & Anderson Monken & Zhengrong Gu, 2021. "Public Policymaking for International Agricultural Trade using Association Rules and Ensemble Machine Learning," Papers 2111.07508, arXiv.org.
- Tom Broekel & Lars Mewes, 2017. "Analyzing the impact of R&D policy on regional diversification," Papers in Evolutionary Economic Geography (PEEG) 1726, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Sep 2017.
More about this item
Keywords
Machine deep learning neural networks; developing economies; emerging economies; knowledge economy; knowledge economy index; World Bank;All these keywords.
JEL classification:
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
- O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
- O57 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Comparative Studies of Countries
- P41 - Political Economy and Comparative Economic Systems - - Other Economic Systems - - - Planning, Coordination, and Reform
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-08-30 (Big Data)
- NEP-CMP-2021-08-30 (Computational Economics)
- NEP-CWA-2021-08-30 (Central and Western Asia)
- NEP-ISF-2021-08-30 (Islamic Finance)
- NEP-KNM-2021-08-30 (Knowledge Management and Knowledge Economy)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:109137. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.