Gotham city. Predicting ‘corrupted’ municipalities with machine learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2022.122016
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gorr, Wilpen & Harries, Richard, 2003. "Introduction to crime forecasting," International Journal of Forecasting, Elsevier, vol. 19(4), pages 551-555.
- Ranson, Matthew, 2014. "Crime, weather, and climate change," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 274-302.
- Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
- Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005.
"Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools,"
Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
- Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2000. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," NBER Working Papers 7831, National Bureau of Economic Research, Inc.
- Gallego, Jorge & Rivero, Gonzalo & Martínez, Juan, 2021.
"Preventing rather than punishing: An early warning model of malfeasance in public procurement,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 360-377.
- Gallego, J & Rivero, G & Martínez, J.D., 2018. "Preventing rather than Punishing: An Early Warning Model of Malfeasance in Public Procurement," Documentos de Trabajo 16724, Universidad del Rosario.
- Aaron Chalfin & Oren Danieli & Andrew Hillis & Zubin Jelveh & Michael Luca & Jens Ludwig & Sendhil Mullainathan, 2016. "Productivity and Selection of Human Capital with Machine Learning," American Economic Review, American Economic Association, vol. 106(5), pages 124-127, May.
- Baysan, Ceren & Burke, Marshall & González, Felipe & Hsiang, Solomon & Miguel, Edward, 2019.
"Non-economic factors in violence: Evidence from organized crime, suicides and climate in Mexico,"
Journal of Economic Behavior & Organization, Elsevier, vol. 168(C), pages 434-452.
- Baysan, Ceren & Burke, Marshall & González, Felipe & Hsiang, Solomon & Miguel, Edward, 2019. "Non-economic factors in violence: Evidence from organized crime, suicides and climate in Mexico," Department of Economics, Working Paper Series qt2dq6v0ch, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Giovanni Mastrobuoni, 2020. "Crime is Terribly Revealing: Information Technology and Police Productivity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(6), pages 2727-2753.
- Francesco Decarolis & Cristina Giorgiantonio, 2020. "Corruption red flags in public procurement: new evidence from Italian calls for tenders," Questioni di Economia e Finanza (Occasional Papers) 544, Bank of Italy, Economic Research and International Relations Area.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022.
"Machine learning in the service of policy targeting: The case of public credit guarantees,"
Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
- Monica Andini & Michela Boldrini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Andrea Paladini, 2019. "Machine learning in the service of policy targeting: the case of public credit guarantees," Temi di discussione (Economic working papers) 1206, Bank of Italy, Economic Research and International Relations Area.
- Ilaria Angelis & Guido Blasio & Lucia Rizzica, 2020. "Lost in Corruption. Evidence from EU Funding to Southern Italy," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 6(2), pages 355-377, July.
- Hossain, Marup & Mullally, Conner & Asadullah, M. Niaz, 2019. "Alternatives to calorie-based indicators of food security: An application of machine learning methods," Food Policy, Elsevier, vol. 84(C), pages 77-91.
- Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
- Jonah E. Rockoff & Brian A. Jacob & Thomas J. Kane & Douglas O. Staiger, 2011.
"Can You Recognize an Effective Teacher When You Recruit One?,"
Education Finance and Policy, MIT Press, vol. 6(1), pages 43-74, January.
- Jonah E. Rockoff & Brian A. Jacob & Thomas J. Kane & Douglas O. Staiger, 2008. "Can You Recognize an Effective Teacher When You Recruit One?," NBER Working Papers 14485, National Bureau of Economic Research, Inc.
- Alessandra Garbero & Marco Letta, 2022. "Predicting household resilience with machine learning: preliminary cross-country tests," Empirical Economics, Springer, vol. 63(4), pages 2057-2070, October.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018.
"Human Decisions and Machine Predictions,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2017. "Human Decisions and Machine Predictions," NBER Working Papers 23180, National Bureau of Economic Research, Inc.
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Vincenzo Carrieri & Raffele Lagravinese & Giuliano Resce, 2021. "Predicting vaccine hesitancy from area‐level indicators: A machine learning approach," Health Economics, John Wiley & Sons, Ltd., vol. 30(12), pages 3248-3256, December.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Linden McBride & Austin Nichols, 2018.
"Retooling Poverty Targeting Using Out-of-Sample Validation and Machine Learning,"
The World Bank Economic Review, World Bank, vol. 32(3), pages 531-550.
- Mcbride,Linden & Nichols,Austin, 2016. "Retooling poverty targeting using out-of-sample validation and machine learning," Policy Research Working Paper Series 7849, The World Bank.
- Ceren Baysan & Marshall Burke & Felipe González & Solomon Hsiang & Edward Miguel, 2018.
"Economic and Non-Economic Factors in Violence: Evidence from Organized Crime, Suicides and Climate in Mexico,"
NBER Working Papers
24897, National Bureau of Economic Research, Inc.
- Ceren Baysan & Marshall Burke & Felipe González & Solomon Hsiang & Edward Miguel, 2019. "Economic and Non-Economic Factors in Violence: Evidence from Organized Crime, Suicides and Climate in Mexico," HiCN Working Papers 292, Households in Conflict Network.
- Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
- Ballestar, María Teresa & Doncel, Luis Miguel & Sainz, Jorge & Ortigosa-Blanch, Arturo, 2019. "A novel machine learning approach for evaluation of public policies: An application in relation to the performance of university researchers," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
- Félix J. López-Iturriaga & Iván Pastor Sanz, 2018. "Predicting Public Corruption with Neural Networks: An Analysis of Spanish Provinces," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 140(3), pages 975-998, December.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
- Lentz, E.C. & Michelson, H. & Baylis, K. & Zhou, Y., 2019. "A data-driven approach improves food insecurity crisis prediction," World Development, Elsevier, vol. 122(C), pages 399-409.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Garbero, Alessandra & Carneiro, Bia & Resce, Giuliano, 2021. "Harnessing the power of machine learning analytics to understand food systems dynamics across development projects," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
- James Horrocks & Andrea Kutinova Menclova, 2011. "The effects of weather on crime," New Zealand Economic Papers, Taylor & Francis Journals, vol. 45(3), pages 231-254, September.
- Dana Chandler & Steven D. Levitt & John A. List, 2011. "Predicting and Preventing Shootings among At-Risk Youth," American Economic Review, American Economic Association, vol. 101(3), pages 288-292, May.
- Knippenberg, Erwin & Jensen, Nathaniel & Constas, Mark, 2019. "Quantifying household resilience with high frequency data: Temporal dynamics and methodological options," World Development, Elsevier, vol. 121(C), pages 1-15.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Augusto Cerqua & Marco Letta & Gabriele Pinto, 2024. "On the (Mis)Use of Machine Learning with Panel Data," Papers 2411.09218, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
- Alessandra Garbero & Marco Letta, 2022. "Predicting household resilience with machine learning: preliminary cross-country tests," Empirical Economics, Springer, vol. 63(4), pages 2057-2070, October.
- Resce, Giuliano & Vaquero-Piñeiro, Cristina, 2022.
"Predicting agri-food quality across space: A Machine Learning model for the acknowledgment of Geographical Indications,"
Food Policy, Elsevier, vol. 112(C).
- Resce, Giuliano & Vaquero-Pineiro, Cristina, 2022. "Predicting Agri-food Quality across Space: A Machine Learning Model for the Acknowledgment of Geographical Indications," Economics & Statistics Discussion Papers esdp22082, University of Molise, Department of Economics.
- Monica Andini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Viola Salvestrini, 2017. "Targeting policy-compliers with machine learning: an application to a tax rebate programme in Italy," Temi di discussione (Economic working papers) 1158, Bank of Italy, Economic Research and International Relations Area.
- Elliott Ash & Sergio Galletta & Tommaso Giommoni, 2021. "A Machine Learning Approach to Analyze and Support Anti-Corruption Policy," CESifo Working Paper Series 9015, CESifo.
- Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
- Battiston, Pietro & Gamba, Simona & Santoro, Alessandro, 2024. "Machine learning and the optimization of prediction-based policies," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
- Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024.
"Predicting dropout from higher education: Evidence from Italy,"
Economic Modelling, Elsevier, vol. 130(C).
- Marco Delogu & Raffaelle Lagravinese & Dimitri Paolini & Giuliano Resce, 2020. "Predicting dropout from higher education: Evidence from Italy," DEM Discussion Paper Series 22-06, Department of Economics at the University of Luxembourg.
- Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
- Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022.
"Machine learning in the service of policy targeting: The case of public credit guarantees,"
Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
- Monica Andini & Michela Boldrini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Andrea Paladini, 2019. "Machine learning in the service of policy targeting: the case of public credit guarantees," Temi di discussione (Economic working papers) 1206, Bank of Italy, Economic Research and International Relations Area.
- Vitezslav Titl & Deni Mazrekaj & Fritz Schiltz, 2024.
"Identifying Politically Connected Firms: A Machine Learning Approach,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 137-155, February.
- Vitezslav Titl & Fritz Schiltz, 2021. "Identifying Politically Connected Firms: A Machine Learning Approach," Working Papers 2110, Utrecht School of Economics.
- Andres, Antonio Rodriguez & Otero, Abraham & Amavilah, Voxi Heinrich, 2021. "Using Deep Learning Neural Networks to Predict the Knowledge Economy Index for Developing and Emerging Economies," MPRA Paper 109137, University Library of Munich, Germany.
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023.
"Towards data-driven project design: Providing optimal treatment rules for development projects,"
Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2021. "Towards Data-driven Project design: Providing Optimal Treatment Rules for Development Projects," 2021 Annual Meeting, August 1-3, Austin, Texas 314016, Agricultural and Applied Economics Association.
- Lily Davies & Mark Kattenberg & Benedikt Vogt, 2023. "Predicting Firm Exits with Machine Learning: Implications for Selection into COVID-19 Support and Productivity Growth," CPB Discussion Paper 444, CPB Netherlands Bureau for Economic Policy Analysis.
- Mehmet Güney Celbiş & Pui-Hang Wong & Karima Kourtit & Peter Nijkamp, 2021. "Innovativeness, Work Flexibility, and Place Characteristics: A Spatial Econometric and Machine Learning Approach," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021.
"Optimal Targeting in Fundraising: A Machine-Learning Approach,"
Economics working papers
2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," CESifo Working Paper Series 9037, CESifo.
- Dario Sansone & Anna Zhu, 2023.
"Using Machine Learning to Create an Early Warning System for Welfare Recipients,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
- Dario Sansone & Anna Zhu, 2020. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Papers 2011.12057, arXiv.org, revised May 2021.
- Sansone, Dario & Zhu, Anna, 2021. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," IZA Discussion Papers 14377, Institute of Labor Economics (IZA).
- McKenzie, David & Sansone, Dario, 2017.
"Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria,"
CEPR Discussion Papers
12523, C.E.P.R. Discussion Papers.
- Mckenzie,David J. & Sansone,Dario & Mckenzie,David J. & Sansone,Dario, 2017. "Man vs. machine in predicting successful entrepreneurs : evidence from a business plan competition in Nigeria," Policy Research Working Paper Series 8271, The World Bank.
More about this item
Keywords
Crime forecasting; White-collar crimes; Machine learning; Classification trees; Policy targeting;All these keywords.
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- D73 - Microeconomics - - Analysis of Collective Decision-Making - - - Bureaucracy; Administrative Processes in Public Organizations; Corruption
- H70 - Public Economics - - State and Local Government; Intergovernmental Relations - - - General
- K10 - Law and Economics - - Basic Areas of Law - - - General (Constitutional Law)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:184:y:2022:i:c:s0040162522005376. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.