IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v22y2024i4d10.1007_s11129-024-09284-1.html
   My bibliography  Save this article

Complementarities between algorithmic and human decision-making: The case of antibiotic prescribing

Author

Listed:
  • Michael Allan Ribers

    (University of Copenhagen)

  • Hannes Ullrich

    (University of Copenhagen
    DIW Berlin, Department Firms and Markets)

Abstract

Artificial Intelligence has the potential to improve human decisions in complex environments, but its effectiveness can remain limited if humans hold context-specific private information. Using the empirical example of antibiotic prescribing for urinary tract infections, we show that full automation of prescribing fails to improve on physician decisions. Instead, optimally delegating a share of decisions to physicians, where they possess private diagnostic information, effectively utilizes the complementarity between algorithmic and human decisions. Combining physician and algorithmic decisions can achieve a reduction in inefficient overprescribing of antibiotics by 20.3 percent.

Suggested Citation

  • Michael Allan Ribers & Hannes Ullrich, 2024. "Complementarities between algorithmic and human decision-making: The case of antibiotic prescribing," Quantitative Marketing and Economics (QME), Springer, vol. 22(4), pages 445-483, December.
  • Handle: RePEc:kap:qmktec:v:22:y:2024:i:4:d:10.1007_s11129-024-09284-1
    DOI: 10.1007/s11129-024-09284-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11129-024-09284-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11129-024-09284-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    2. Aaron Chalfin & Oren Danieli & Andrew Hillis & Zubin Jelveh & Michael Luca & Jens Ludwig & Sendhil Mullainathan, 2016. "Productivity and Selection of Human Capital with Machine Learning," American Economic Review, American Economic Association, vol. 106(5), pages 124-127, May.
    3. Agrawal, Ajay & Gans, Joshua S. & Goldfarb, Avi, 2019. "Exploring the impact of artificial Intelligence: Prediction versus judgment," Information Economics and Policy, Elsevier, vol. 47(C), pages 1-6.
    4. Janet Currie & W. Bentley MacLeod, 2017. "Diagnosing Expertise: Human Capital, Decision Making, and Performance among Physicians," Journal of Labor Economics, University of Chicago Press, vol. 35(1), pages 1-43.
    5. Mohsen Bayati & Mark Braverman & Michael Gillam & Karen M Mack & George Ruiz & Mark S Smith & Eric Horvitz, 2014. "Data-Driven Decisions for Reducing Readmissions for Heart Failure: General Methodology and Case Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-9, October.
    6. Huang, Shan & Ribers, Michael Allan & Ullrich, Hannes, 2022. "Assessing the value of data for prediction policies: The case of antibiotic prescribing," Economics Letters, Elsevier, vol. 213(C).
    7. Hannes Ullrich & Michael Allan Ribers, 2023. "Machine predictions and human decisions with variation in payoffs and skill: the case of antibiotic prescribing," Berlin School of Economics Discussion Papers 0027, Berlin School of Economics.
    8. Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
    9. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    10. Sean Cao & Wei Jiang & Junbo L. Wang & Baozhong Yang, 2021. "From Man vs. Machine to Man + Machine: The Art and AI of Stock Analyses," NBER Working Papers 28800, National Bureau of Economic Research, Inc.
    11. Sendhil Mullainathan & Ziad Obermeyer, 2022. "Diagnosing Physician Error: A Machine Learning Approach to Low-Value Health Care [“The Determinants of Productivity in Medical Testing: Intensity and Allocation of Care,”]," The Quarterly Journal of Economics, Oxford University Press, vol. 137(2), pages 679-727.
    12. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    13. Charles F. Manski & John Mullahy & Atheendar S. Venkataramani, 2023. "Using measures of race to make clinical predictions: Decision making, patient health, and fairness," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(35), pages 2303370120-, August.
    14. Jérôme Adda, 2020. "Preventing the Spread of Antibiotic Resistance," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 255-259, May.
    15. Jean-Pierre Dubé & Sanjog Misra, 2023. "Personalized Pricing and Consumer Welfare," Journal of Political Economy, University of Chicago Press, vol. 131(1), pages 131-189.
    16. Dana Chandler & Steven D. Levitt & John A. List, 2011. "Predicting and Preventing Shootings among At-Risk Youth," American Economic Review, American Economic Association, vol. 101(3), pages 288-292, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Allan Ribers & Hannes Ullrich, 2023. "Machine learning and physician prescribing: a path to reduced antibiotic use," Berlin School of Economics Discussion Papers 0019, Berlin School of Economics.
    2. Hannes Ullrich & Michael Allan Ribers, 2023. "Machine predictions and human decisions with variation in payoffs and skill: the case of antibiotic prescribing," Berlin School of Economics Discussion Papers 0027, Berlin School of Economics.
    3. Michael Allan Ribers & Hannes Ullrich, 2019. "Battling Antibiotic Resistance: Can Machine Learning Improve Prescribing?," Papers 1906.03044, arXiv.org.
    4. Michael Allan Ribers & Hannes Ullrich, 2020. "Machine Predictions and Human Decisions with Variation in Payoffs and Skills," Discussion Papers of DIW Berlin 1911, DIW Berlin, German Institute for Economic Research.
    5. de Blasio, Guido & D'Ignazio, Alessio & Letta, Marco, 2022. "Gotham city. Predicting ‘corrupted’ municipalities with machine learning," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    6. Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
    7. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Shan Huang & Michael Allan Ribers & Hannes Ullrich, 2021. "The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing," Discussion Papers of DIW Berlin 1939, DIW Berlin, German Institute for Economic Research.
    9. Huang, Shan & Ribers, Michael Allan & Ullrich, Hannes, 2022. "Assessing the value of data for prediction policies: The case of antibiotic prescribing," Economics Letters, Elsevier, vol. 213(C).
    10. Battiston, Pietro & Gamba, Simona & Santoro, Alessandro, 2024. "Machine learning and the optimization of prediction-based policies," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    11. Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022. "Machine learning in the service of policy targeting: The case of public credit guarantees," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
    12. Monica Andini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Viola Salvestrini, 2017. "Targeting policy-compliers with machine learning: an application to a tax rebate programme in Italy," Temi di discussione (Economic working papers) 1158, Bank of Italy, Economic Research and International Relations Area.
    13. Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
    14. McKenzie, David & Sansone, Dario, 2017. "Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria," CEPR Discussion Papers 12523, C.E.P.R. Discussion Papers.
    15. Keding, Christoph & Meissner, Philip, 2021. "Managerial overreliance on AI-augmented decision-making processes: How the use of AI-based advisory systems shapes choice behavior in R&D investment decisions," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    16. Ballestar, María Teresa & Doncel, Luis Miguel & Sainz, Jorge & Ortigosa-Blanch, Arturo, 2019. "A novel machine learning approach for evaluation of public policies: An application in relation to the performance of university researchers," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
    17. McKenzie, David & Sansone, Dario, 2019. "Predicting entrepreneurial success is hard: Evidence from a business plan competition in Nigeria," Journal of Development Economics, Elsevier, vol. 141(C).
    18. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    19. Sendhil Mullainathan & Ziad Obermeyer, 2023. "Diagnosing Physician Error: A Machine Learning Approach to Low-Value Health Care," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(2), pages 679-727.
    20. Runshan Fu & Yan Huang & Param Vir Singh, 2020. "Crowd, Lending, Machine, and Bias," Papers 2008.04068, arXiv.org.

    More about this item

    Keywords

    Human-machine complementarity; Machine learning; Antibiotic resistance; Antibiotic prescribing;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • I19 - Health, Education, and Welfare - - Health - - - Other
    • L2 - Industrial Organization - - Firm Objectives, Organization, and Behavior
    • M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:22:y:2024:i:4:d:10.1007_s11129-024-09284-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.