IDEAS home Printed from https://ideas.repec.org/p/bdp/dpaper/0019.html
   My bibliography  Save this paper

Machine learning and physician prescribing: a path to reduced antibiotic use

Author

Listed:
  • Michael Allan Ribers
  • Hannes Ullrich

Abstract

Inefficient human decisions are driven by biases and limited information. Health care is one leading example where machine learning is hoped to deliver efficiency gains. Antibiotic resistance constitutes a major challenge to health care systems due to human antibiotic overuse. We investigate how a policy leveraging the strengths of a machine learning algorithm and physicians can provide new opportunities to reduce antibiotic use. We focus on urinary tract infections in primary care, a leading cause for antibiotic use, where physicians often prescribe prior to attaining diagnostic certainty. Symptom assessment and rapid testing provide diagnostic information with limited accuracy, while laboratory testing can diagnose bacterial infections with considerable delay. Linking Danish administrative and laboratory data, we optimize policy rules which base initial prescription decisions on machine learning predictions and delegate decisions to physicians where these benefit most from private information at the point-of-care. The policy shows a potential to reduce antibiotic prescribing by 8.1 percent and overprescribing by 20.3 percent without assigning fewer prescriptions to patients with bacterial infections. We find human-algorithm complementarity is essential to achieve efficiency gains.

Suggested Citation

  • Michael Allan Ribers & Hannes Ullrich, 2023. "Machine learning and physician prescribing: a path to reduced antibiotic use," Berlin School of Economics Discussion Papers 0019, Berlin School of Economics.
  • Handle: RePEc:bdp:dpaper:0019
    DOI: 10.48462/opus4-4976
    as

    Download full text from publisher

    File URL: https://opus4.kobv.de/opus4-hsog/files/4976/BSE_DP_0019.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.48462/opus4-4976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aaron Chalfin & Oren Danieli & Andrew Hillis & Zubin Jelveh & Michael Luca & Jens Ludwig & Sendhil Mullainathan, 2016. "Productivity and Selection of Human Capital with Machine Learning," American Economic Review, American Economic Association, vol. 106(5), pages 124-127, May.
    2. Mohsen Bayati & Mark Braverman & Michael Gillam & Karen M Mack & George Ruiz & Mark S Smith & Eric Horvitz, 2014. "Data-Driven Decisions for Reducing Readmissions for Heart Failure: General Methodology and Case Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-9, October.
    3. Huang, Shan & Ribers, Michael Allan & Ullrich, Hannes, 2022. "Assessing the value of data for prediction policies: The case of antibiotic prescribing," Economics Letters, Elsevier, vol. 213(C).
    4. Kwon, Illoong & Jun, Daesung, 2015. "Information disclosure and peer effects in the use of antibiotics," Journal of Health Economics, Elsevier, vol. 42(C), pages 1-16.
    5. Sean Cao & Wei Jiang & Junbo L. Wang & Baozhong Yang, 2021. "From Man vs. Machine to Man + Machine: The Art and AI of Stock Analyses," NBER Working Papers 28800, National Bureau of Economic Research, Inc.
    6. Jérôme Adda, 2020. "Preventing the Spread of Antibiotic Resistance," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 255-259, May.
    7. Agrawal, Ajay & Gans, Joshua S. & Goldfarb, Avi, 2019. "Exploring the impact of artificial Intelligence: Prediction versus judgment," Information Economics and Policy, Elsevier, vol. 47(C), pages 1-6.
    8. Daniel Bennett & Che-Lun Hung & Tsai-Ling Lauderdale, 2015. "Health Care Competition and Antibiotic Use in Taiwan," Journal of Industrial Economics, Wiley Blackwell, vol. 63(2), pages 371-393, June.
    9. Prithwiraj Choudhury & Evan Starr & Rajshree Agarwal, 2020. "Machine learning and human capital complementarities: Experimental evidence on bias mitigation," Strategic Management Journal, Wiley Blackwell, vol. 41(8), pages 1381-1411, August.
    10. Justine S. Hastings & Mark Howison & Sarah E. Inman, 2020. "Predicting high-risk opioid prescriptions before they are given," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(4), pages 1917-1923, January.
    11. Janet Currie & W. Bentley MacLeod, 2017. "Diagnosing Expertise: Human Capital, Decision Making, and Performance among Physicians," Journal of Labor Economics, University of Chicago Press, vol. 35(1), pages 1-43.
    12. Jishnu Das & Alaka Holla & Aakash Mohpal & Karthik Muralidharan, 2016. "Quality and Accountability in Health Care Delivery: Audit-Study Evidence from Primary Care in India," American Economic Review, American Economic Association, vol. 106(12), pages 3765-3799, December.
    13. Currie, Janet & Lin, Wanchuan & Meng, Juanjuan, 2014. "Addressing antibiotic abuse in China: An experimental audit study," Journal of Development Economics, Elsevier, vol. 110(C), pages 39-51.
    14. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    15. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    16. Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
    17. Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338, July.
    18. Sendhil Mullainathan & Ziad Obermeyer, 2022. "Diagnosing Physician Error: A Machine Learning Approach to Low-Value Health Care [“The Determinants of Productivity in Medical Testing: Intensity and Allocation of Care,”]," The Quarterly Journal of Economics, Oxford University Press, vol. 137(2), pages 679-727.
    19. Jean-Pierre Dubé & Sanjog Misra, 2023. "Personalized Pricing and Consumer Welfare," Journal of Political Economy, University of Chicago Press, vol. 131(1), pages 131-189.
    20. Robert C. Blattberg & Stephen J. Hoch, 1990. "Database Models and Managerial Intuition: 50% Model + 50% Manager," Management Science, INFORMS, vol. 36(8), pages 887-899, August.
    21. Dana Chandler & Steven D. Levitt & John A. List, 2011. "Predicting and Preventing Shootings among At-Risk Youth," American Economic Review, American Economic Association, vol. 101(3), pages 288-292, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannes Ullrich & Michael Allan Ribers, 2023. "Machine predictions and human decisions with variation in payoffs and skill: the case of antibiotic prescribing," Berlin School of Economics Discussion Papers 0027, Berlin School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannes Ullrich & Michael Allan Ribers, 2023. "Machine predictions and human decisions with variation in payoffs and skill: the case of antibiotic prescribing," Berlin School of Economics Discussion Papers 0027, Berlin School of Economics.
    2. Michael A. Ribers & Hannes Ullrich, 2019. "Battling Antibiotic Resistance: Can Machine Learning Improve Prescribing?," Discussion Papers of DIW Berlin 1803, DIW Berlin, German Institute for Economic Research.
    3. Michael Allan Ribers & Hannes Ullrich, 2020. "Machine Predictions and Human Decisions with Variation in Payoffs and Skill," Papers 2011.11017, arXiv.org.
    4. Shan Huang & Michael Allan Ribers & Hannes Ullrich, 2021. "The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing," Discussion Papers of DIW Berlin 1939, DIW Berlin, German Institute for Economic Research.
    5. Huang, Shan & Ribers, Michael Allan & Ullrich, Hannes, 2022. "Assessing the value of data for prediction policies: The case of antibiotic prescribing," Economics Letters, Elsevier, vol. 213(C).
    6. de Blasio, Guido & D'Ignazio, Alessio & Letta, Marco, 2022. "Gotham city. Predicting ‘corrupted’ municipalities with machine learning," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    7. Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
    8. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    9. Sebastian Panthöfer, 2022. "Do doctors prescribe antibiotics out of fear of malpractice?," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 19(2), pages 340-381, June.
    10. Keding, Christoph & Meissner, Philip, 2021. "Managerial overreliance on AI-augmented decision-making processes: How the use of AI-based advisory systems shapes choice behavior in R&D investment decisions," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    11. Christian Posso & Jorge Tamayo & Arlen Guarin & Estefania Saravia, 2024. "Luck of the Draw: The Causal Effect of Physicians on Birth Outcomes," Borradores de Economia 1269, Banco de la Republica de Colombia.
    12. Battiston, Pietro & Gamba, Simona & Santoro, Alessandro, 2024. "Machine learning and the optimization of prediction-based policies," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    13. Dubois, Pierre & Gokkoca, Gokce, 2023. "Antibiotic Demand in the Presence of Antimicrobial Resistance," TSE Working Papers 23-1457, Toulouse School of Economics (TSE).
    14. Bokhari, Farasat A.S. & Mariuzzo, Franco & Yan, Weijie, 2024. "Antibacterial resistance and the cost of affecting demand: The case of UK antibiotics," International Journal of Industrial Organization, Elsevier, vol. 95(C).
    15. Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022. "Machine learning in the service of policy targeting: The case of public credit guarantees," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
    16. Si, Yafei & Bateman, Hazel & Chen, Shu & Hanewald, Katja & Li, Bingqin & Su, Min & Zhou, Zhongliang, 2023. "Quantifying the financial impact of overuse in primary care in China: A standardised patient study," Social Science & Medicine, Elsevier, vol. 320(C).
    17. Shan Huang & Hannes Ullrich, 2023. "Provider effects in antibiotic prescribing: Evidence from physician exits," Berlin School of Economics Discussion Papers 0018, Berlin School of Economics.
    18. Sendhil Mullainathan & Ziad Obermeyer, 2023. "Diagnosing Physician Error: A Machine Learning Approach to Low-Value Health Care," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(2), pages 679-727.
    19. Bauer, Kevin & Pfeuffer, Nicolas & Abdel-Karim, Benjamin M. & Hinz, Oliver & Kosfeld, Michael, 2020. "The terminator of social welfare? The economic consequences of algorithmic discrimination," SAFE Working Paper Series 287, Leibniz Institute for Financial Research SAFE.
    20. Monica Andini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Viola Salvestrini, 2017. "Targeting policy-compliers with machine learning: an application to a tax rebate programme in Italy," Temi di discussione (Economic working papers) 1158, Bank of Italy, Economic Research and International Relations Area.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdp:dpaper:0019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Reiter (email available below). General contact details of provider: https://edirc.repec.org/data/bdpemde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.