IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v73y2025ipas0275531924004094.html
   My bibliography  Save this article

The effect of ESG divergence on the financial performance of Hong Kong-listed firms: An artificial neural network approach

Author

Listed:
  • Cheng, Louis T.W.
  • Cheong, Tsun Se
  • Wojewodzki, Michal
  • Chui, David

Abstract

This paper applies an advanced machine learning algorithm, the Artificial Neural Network (ANN), to examine both linear and nonlinear effects between firm-level characteristics and ESG performance of all firms listed on the Hong Kong Stock Exchange (HKEX) with ESG scores during 2019–2021. To mitigate the problem of data-specific findings due to rating bias from a single rating agency, we employ novel iScore (divergence-adjusted ESG measure). The documented findings indicate the unsuitability of traditional linear regression models to capture the nonlinear effects and to detect some linear relationships. Furthermore, the results show the superiority of the self-organising map (SOM) ANN framework in explaining the impact of firm-level factors on ESG performance.

Suggested Citation

  • Cheng, Louis T.W. & Cheong, Tsun Se & Wojewodzki, Michal & Chui, David, 2025. "The effect of ESG divergence on the financial performance of Hong Kong-listed firms: An artificial neural network approach," Research in International Business and Finance, Elsevier, vol. 73(PA).
  • Handle: RePEc:eee:riibaf:v:73:y:2025:i:pa:s0275531924004094
    DOI: 10.1016/j.ribaf.2024.102616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531924004094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2024.102616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:73:y:2025:i:pa:s0275531924004094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.