IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v220y2021i1p130-157.html
   My bibliography  Save this article

When will the Covid-19 pandemic peak?

Author

Listed:
  • Li, Shaoran
  • Linton, Oliver

Abstract

We carry out some analysis of the daily data on the number of new cases and the number of new deaths by (191) countries as reported to the European Centre for Disease Prevention and Control (ECDC). Our benchmark model is a quadratic time trend model applied to the log of new cases for each country. We use our model to predict when the peak of the epidemic will arise in terms of new cases or new deaths in each country and the peak level. We also predict how long the number of new daily cases in each country will fall by an order of magnitude. Finally, we also forecast the total number of cases and deaths for each country. We consider two models that link the joint evolution of new cases and new deaths.

Suggested Citation

  • Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
  • Handle: RePEc:eee:econom:v:220:y:2021:i:1:p:130-157
    DOI: 10.1016/j.jeconom.2020.07.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620303055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.07.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Liu, Laura & Moon, Hyungsik Roger & Schorfheide, Frank, 2021. "Panel forecasts of country-level Covid-19 infections," Journal of Econometrics, Elsevier, vol. 220(1), pages 2-22.
    2. Marinucci, D & Robinson, Peter M., 2001. "Semiparametric fractional cointegration analysis," LSE Research Online Documents on Economics 2269, London School of Economics and Political Science, LSE Library.
    3. Rebucci, Alessandro & Chudik, Alexander & Pesaran, M. Hashem, 2020. "Voluntary and Mandatory Social Distancing: Evidence on COVID-19 Exposure Rates from Chinese Provinces and Selected Countries," CEPR Discussion Papers 14646, C.E.P.R. Discussion Papers.
    4. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    5. Christian M. Hafner, 2020. "The Spread of the Covid-19 Pandemic in Time and Space," IJERPH, MDPI, vol. 17(11), pages 1-13, May.
    6. Marinucci, D. & Robinson, P. M., 2001. "Semiparametric fractional cointegration analysis," Journal of Econometrics, Elsevier, vol. 105(1), pages 225-247, November.
    7. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    8. D Marinucci & Peter M Robinson, 2001. "Semiparametric Fractional Cointegration Analysis," STICERD - Econometrics Paper Series 420, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    9. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    10. Campbell, John Y, 1993. "Intertemporal Asset Pricing without Consumption Data," American Economic Review, American Economic Association, vol. 83(3), pages 487-512, June.
    11. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    12. Daron Acemoglu & Victor Chernozhukov & Ivàn Werning & Michael D. Whinston, 2020. "A Multi-Risk SIR Model with Optimally Targeted Lockdown," CeMMAP working papers CWP14/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
    14. Härdle, W. & Marron, S.J., 1990. "Semiparametric comparison of regression curves," LIDAM Reprints CORE 890, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Gozalo, Pedro & Linton, Oliver, 2000. "Local nonlinear least squares: Using parametric information in nonparametric regression," Journal of Econometrics, Elsevier, vol. 99(1), pages 63-106, November.
    16. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    17. Pesaran, M. Hashem & Yamagata, Takashi, 2012. "Testing CAPM with a Large Number of Assets," IZA Discussion Papers 6469, Institute of Labor Economics (IZA).
    18. Wang, Qiying, 2014. "Martingale Limit Theorem Revisited And Nonlinear Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 30(3), pages 509-535, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Chaohua & Linton, Oliver & Peng, Bin, 2021. "A weighted sieve estimator for nonparametric time series models with nonstationary variables," Journal of Econometrics, Elsevier, vol. 222(2), pages 909-932.
    2. Hurvich, Cliiford & Wang, Yi, 2006. "A Pure-Jump Transaction-Level Price Model Yielding Cointegration, Leverage, and Nonsynchronous Trading Effects," MPRA Paper 1413, University Library of Munich, Germany.
    3. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    4. Peter Robinson, 2007. "Diagnostic Testing For Cointegration," STICERD - Econometrics Paper Series 522, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Guglielmo Maria Caporale & Juncal Cunado & Luis A. Gil-Alana & Rangan Gupta, 2018. "The relationship between healthcare expenditure and disposable personal income in the US states: a fractional integration and cointegration analysis," Empirical Economics, Springer, vol. 55(3), pages 913-935, November.
    6. Abbritti, Mirko & Carcel, Hector & Gil-Alana, Luis & Moreno, Antonio, 2023. "Term premium in a fractionally cointegrated yield curve," Journal of Banking & Finance, Elsevier, vol. 149(C).
    7. Guglielmo Caporale & Luis Gil-Alana, 2014. "Fractional integration and cointegration in US financial time series data," Empirical Economics, Springer, vol. 47(4), pages 1389-1410, December.
    8. Robinson, P.M. & Iacone, F., 2005. "Cointegration in fractional systems with deterministic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 263-298.
    9. Aaron D. Smallwood & Stefan C. Norrbin, 2006. "Generalized long memory processes, failure of cointegration tests and exchange rate dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 409-417, May.
    10. Marina Balboa & Paulo M. M. Rodrigues & Antonio Rubia & A. M. Robert Taylor, 2021. "Multivariate fractional integration tests allowing for conditional heteroskedasticity with an application to return volatility and trading volume," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 544-565, August.
    11. Morana, Claudio, 2007. "Multivariate modelling of long memory processes with common components," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 919-934, October.
    12. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "A comparison of semiparametric tests for fractional cointegration," Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
    13. Carlos Barros & Guglielmo Maria Caporale & Luis Gil-Alana, 2014. "Long Memory in Angolan Macroeconomic Series: Mean Reversion versus Explosive Behaviour," African Development Review, African Development Bank, vol. 26(1), pages 59-73.
    14. John Goddard & David Mcmillan & John Wilson, 2008. "Dividends, prices and the present value model: firm-level evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 14(3), pages 195-210.
    15. Guglielmo Maria Caporale & Luis Gil‐Alana, 2020. "Prospects for a Monetary Union in the East Africa Community: Some Empirical Evidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(2), pages 174-185, June.
    16. Aaron Smallwood & Stefan Norrbin, 2004. "Estimating cointegrating vectors using near unit root variables," Applied Economics Letters, Taylor & Francis Journals, vol. 11(12), pages 781-784.
    17. Guglielmo Maria Caporale & Luis Alberiko Gil-Alana & Robert Mudida, 2015. "Testing the Marshall–Lerner Condition in Kenya," South African Journal of Economics, Economic Society of South Africa, vol. 83(2), pages 253-268, June.
    18. Morana, Claudio, 2009. "On the macroeconomic causes of exchange rate volatility," International Journal of Forecasting, Elsevier, vol. 25(2), pages 328-350.
    19. Yaya, OlaOluwa S. & Gil-Alana, Luis A. & Adekoya, Oluwasegun B. & Vo, Xuan Vinh, 2021. "How fearful are commodities and US stocks in response to global fear? Persistence and cointegration analyses," Resources Policy, Elsevier, vol. 74(C).
    20. Luis A. Gil‐Alana, 2003. "Testing of Fractional Cointegration in Macroeconomic Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(4), pages 517-529, September.

    More about this item

    Keywords

    Epidemic; Nonparametric; Prediction; Trend;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:220:y:2021:i:1:p:130-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.