IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v2y1984i3p260-70.html
   My bibliography  Save this article

Seasonal Adjustment of the Weekly Monetary Aggregates: A Model-based Approach

Author

Listed:
  • Pierce, David A
  • Grupe, Michael R
  • Cleveland, William P

Abstract

No abstract is available for this item.

Suggested Citation

  • Pierce, David A & Grupe, Michael R & Cleveland, William P, 1984. "Seasonal Adjustment of the Weekly Monetary Aggregates: A Model-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 260-270, July.
  • Handle: RePEc:bes:jnlbes:v:2:y:1984:i:3:p:260-70
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Sebastián Becerra C. & Luis Ceballos S. & Felipe Córdova F. & Michael Pedersen, 2010. "Market Interest Rate Dynamics in Times of Financial Turmoil," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 13(1), pages 5-22, April.
    2. Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
    3. Barend Abeln & Jan P. A. M. Jacobs, 2023. "COVID-19 and Seasonal Adjustment," SpringerBriefs in Economics, in: Seasonal Adjustment Without Revisions, chapter 0, pages 53-61, Springer.
    4. Ollech, Daniel, 2018. "Seasonal adjustment of daily time series," Discussion Papers 41/2018, Deutsche Bundesbank.
    5. Proietti, Tommaso & Pedregal, Diego J., 2023. "Seasonality in High Frequency Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 62-82.
    6. Serena Ng, 2017. "Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data," NBER Working Papers 23673, National Bureau of Economic Research, Inc.
    7. Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
    8. Joao Tovar Jalles, 2009. "Structural time series models and the Kalman filter: a concise review," Nova SBE Working Paper Series wp541, Universidade Nova de Lisboa, Nova School of Business and Economics.
    9. Philipp Wegmüller & Christian Glocker, 2023. "US weekly economic index: Replication and extension," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 977-985, September.
    10. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    11. Bhattacharya, Rudrani & Patnaik, Ila & Shah, Ajay, 2008. "Early warnings of inflation in India," Working Papers 08/54, National Institute of Public Finance and Policy.
    12. Andrea Silvestrini, 2011. "The revision policy of seasonally adjusted balance sheet data in Italy," Applied Economics Letters, Taylor & Francis Journals, vol. 18(17), pages 1713-1717.
    13. Rishab Guha & Serena Ng, 2019. "A Machine Learning Analysis of Seasonal and Cyclical Sales in Weekly Scanner Data," NBER Chapters, in: Big Data for Twenty-First-Century Economic Statistics, pages 403-436, National Bureau of Economic Research, Inc.
    14. Mariam El Hamiani Khatat, 2018. "Monetary Policy and Models of Currency Demand," IMF Working Papers 2018/028, International Monetary Fund.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:2:y:1984:i:3:p:260-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.