IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/fb52ef4b-d73a-486d-b154-f3fc512c5a96.html
   My bibliography  Save this paper

Characterizations of a Multi-Choice Value

Author

Listed:
  • Klijn, F.

    (Tilburg University, School of Economics and Management)

  • Slikker, M.

    (Tilburg University, School of Economics and Management)

  • Zarzuelo, J.

Abstract

A multi-choice game is a generalization of a cooperative game in which each player has several activity levels. We study the extended Shapley value as proposed by Derks and Peters (1993). Van den Nouweland (1993) provided a characterization that is an extension of Young's (1985) characterization of the Shapley value. Here we provide several other characterizations, one of which is the analogue of Shapley's (1953) original characterization. The three other characterizations are inspired by Myerson's (1980) characterization of the Shapley value using balanced contributions.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Klijn, F. & Slikker, M. & Zarzuelo, J., 1997. "Characterizations of a Multi-Choice Value," Other publications TiSEM fb52ef4b-d73a-486d-b154-f, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:fb52ef4b-d73a-486d-b154-f3fc512c5a96
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/528298/756.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Derks, Jean & Peters, Hans, 1993. "A Shapley Value for Games with Restricted Coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 351-360.
    2. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Larrea, Concepcion & Santos, J.C., 2006. "Cost allocation schemes: An asymptotic approach," Games and Economic Behavior, Elsevier, vol. 57(1), pages 63-72, October.
    2. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2017. "Axiomatization of an importance index for Generalized Additive Independence models," Post-Print halshs-01659796, HAL.
    3. GRABISCH, Michel & LABREUCHE, Christophe & RIDAOUI, Mustapha, 2019. "On importance indices in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 277(1), pages 269-283.
    4. Sylvain Béal & Adriana Navarro-Ramos & Eric Rémila & Philippe Solal, 2023. "Sharing the cost of hazardous transportation networks and the Priority Shapley value," Working Papers hal-04222245, HAL.
    5. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    6. Yu-Hsien Liao, 2012. "Converse consistent enlargements of the unit-level-core of the multi-choice games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 743-753, December.
    7. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    8. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    9. Branzei, R. & Tijs, S. & Zarzuelo, J., 2009. "Convex multi-choice games: Characterizations and monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 198(2), pages 571-575, October.
    10. Brânzei, R. & Tijs, S.H. & Zarzuelo, J., 2007. "Convex Multi-Choice Cooperative Games and their Monotonic Allocation Schemes," Discussion Paper 2007-54, Tilburg University, Center for Economic Research.
    11. David Lowing & Kevin Techer, 2021. "Marginalism, Egalitarianism and E ciency in Multi-Choice Games," Working Papers halshs-03334056, HAL.
    12. Brânzei, R. & Tijs, S.H. & Zarzuelo, J., 2007. "Convex Multi-Choice Cooperative Games and their Monotonic Allocation Schemes," Other publications TiSEM 5549df35-acc3-4890-be43-4, Tilburg University, School of Economics and Management.
    13. Txus Ortells & Juan Santos, 2011. "The pseudo-average rule: bankruptcy, cost allocation and bargaining," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(1), pages 55-73, February.
    14. Fanyong Meng & Qiang Zhang & Xiaohong Chen, 2017. "Fuzzy Multichoice Games with Fuzzy Characteristic Functions," Group Decision and Negotiation, Springer, vol. 26(3), pages 565-595, May.
    15. M. Albizuri, 2009. "The multichoice coalition value," Annals of Operations Research, Springer, vol. 172(1), pages 363-374, November.
    16. Hwang, Yan-An & Liao, Yu-Hsien, 2008. "Potential approach and characterizations of a Shapley value in multi-choice games," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 321-335, November.
    17. David Lowing & Makoto Yokoo, 2023. "Sharing values for multi-choice games: an axiomatic approach," Working Papers hal-04018735, HAL.
    18. Calvo, Emilio & Santos, Juan Carlos, 2000. "A value for multichoice games," Mathematical Social Sciences, Elsevier, vol. 40(3), pages 341-354, November.
    19. Lowing, David & Techer, Kevin, 2022. "Priority relations and cooperation with multiple activity levels," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    20. Larrea, C. & Santos, J.C., 2007. "A characterization of the pseudo-average cost method," Mathematical Social Sciences, Elsevier, vol. 53(2), pages 140-149, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    2. R. Branzei & N. Llorca & J. Sánchez-Soriano & S. Tijs, 2014. "A constrained egalitarian solution for convex multi-choice games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 860-874, October.
    3. Hsiao, Chih-Ru & Chiou, Wen-Lin, 2009. "Modeling a Multi-Choice Game Based on the Spirit of Equal Job Opportunities (New)," MPRA Paper 16023, University Library of Munich, Germany.
    4. M. Albizuri, 2009. "The multichoice coalition value," Annals of Operations Research, Springer, vol. 172(1), pages 363-374, November.
    5. Calvo, Emilio & Santos, Juan Carlos, 2000. "A value for multichoice games," Mathematical Social Sciences, Elsevier, vol. 40(3), pages 341-354, November.
    6. Michael Jones & Jennifer Wilson, 2010. "Multilinear extensions and values for multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(1), pages 145-169, August.
    7. Michael Jones & Jennifer Wilson, 2013. "Two-step coalition values for multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 65-99, February.
    8. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    9. Michel Grabisch & Christophe Labreuche & Mustapha Ridaoui, 2022. "Well-formed decompositions of generalized additive independence models," Annals of Operations Research, Springer, vol. 312(2), pages 827-852, May.
    10. Christophe Labreuche & Michel Grabisch, 2008. "A value for bi-cooperative games," Post-Print halshs-00308738, HAL.
    11. Christophe Labreuche & Michel Grabisch, 2016. "A comparison of the GAI model and the Choquet integral with respect to a k-ary capacity," Documents de travail du Centre d'Economie de la Sorbonne 16004, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    12. Pongou, Roland & Tondji, Jean-Baptiste, 2018. "Valuing inputs under supply uncertainty: The Bayesian Shapley value," Games and Economic Behavior, Elsevier, vol. 108(C), pages 206-224.
    13. Grabisch, Michel & Rusinowska, Agnieszka, 2011. "Influence functions, followers and command games," Games and Economic Behavior, Elsevier, vol. 72(1), pages 123-138, May.
    14. Gerwald Gulick & Henk Norde, 2013. "Fuzzy cores and fuzzy balancedness," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 131-146, April.
    15. Hsiao, Chih-Ru & Chiou, Wen-Lin, 2009. "Modeling a Multi-Choice Game Based on the Spirit of Equal Job opportunities," MPRA Paper 15285, University Library of Munich, Germany.
    16. Michel Grabisch & Agnieszka Rusinowska, 2010. "A model of influence with an ordered set of possible actions," Theory and Decision, Springer, vol. 69(4), pages 635-656, October.
    17. van der Brink, R., 1994. "An Axiomatization of the Disjunctive Permission Value for Games with a Permission Structure," Discussion Paper 1994-33, Tilburg University, Center for Economic Research.
    18. Derks, Jean & Peters, Hans, 1997. "Consistent restricted Shapley values," Mathematical Social Sciences, Elsevier, vol. 33(1), pages 75-91, February.
    19. Freixas, Josep & Zwicker, William S., 2009. "Anonymous yes-no voting with abstention and multiple levels of approval," Games and Economic Behavior, Elsevier, vol. 67(2), pages 428-444, November.
    20. Michel Grabisch & Agnieszka Rusinowska, 2008. "Measuring influence among players with an ordered set of possible actions," Working Papers 0801, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:fb52ef4b-d73a-486d-b154-f3fc512c5a96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.