IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v196y2012i1p27-5110.1007-s10479-012-1150-1.html
   My bibliography  Save this article

The average tree solution for multi-choice forest games

Author

Listed:
  • S. Béal
  • A. Lardon
  • E. Rémila
  • P. Solal

Abstract

In this article we study cooperative multi-choice games with limited cooperation possibilities, represented by an undirected forest on the player set. Players in the game can cooperate if they are connected in the forest. We introduce a new (single-valued) solution concept which is a generalization of the average tree solution defined and characterized by Herings et al. (Games Econ. Behav. 62:77–92, 2008 ) for TU-games played on a forest. Our solution is characterized by component efficiency, component fairness and independence on the greatest activity level. It belongs to the precore of a restricted multi-choice game whenever the underlying multi-choice game is superadditive and isotone. We also link our solution with the hierarchical outcomes (Demange in J. Polit. Econ. 112:754–778, 2004 ) of some particular TU-games played on trees. Finally, we propose two possible economic applications of our average tree solution. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
  • Handle: RePEc:spr:annopr:v:196:y:2012:i:1:p:27-51:10.1007/s10479-012-1150-1
    DOI: 10.1007/s10479-012-1150-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1150-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1150-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michel Grabisch & Lijue Xie, 2007. "A new approach to the core and Weber set of multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 491-512, December.
    2. Hans Peters & Horst Zank, 2005. "The Egalitarian Solution for Multichoice Games," Annals of Operations Research, Springer, vol. 137(1), pages 399-409, July.
    3. Debasis Mishra & A. Talman, 2010. "A characterization of the average tree solution for tree games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 105-111, March.
    4. Khanna, Neha, 2000. "Measuring environmental quality: an index of pollution," Ecological Economics, Elsevier, vol. 35(2), pages 191-202, November.
    5. Hwang, Yan-An & Liao, Yu-Hsien, 2008. "Potential approach and characterizations of a Shapley value in multi-choice games," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 321-335, November.
    6. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    7. José Zarzuelo & Marco Slikker & Flip Klijn, 1999. "Characterizations of a multi-choice value," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 521-532.
    8. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
    9. Michel Grabisch & Fabien Lange, 2007. "Games on lattices, multichoice games and the shapley value: a new approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 153-167, February.
    10. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
    11. Calvo, Emilio & Santos, Juan Carlos, 2000. "A value for multichoice games," Mathematical Social Sciences, Elsevier, vol. 40(3), pages 341-354, November.
    12. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    14. M. Albizuri, 2009. "The multichoice coalition value," Annals of Operations Research, Springer, vol. 172(1), pages 363-374, November.
    15. Josep Freixas, 2005. "Banzhaf Measures for Games with Several Levels of Approval in the Input and Output," Annals of Operations Research, Springer, vol. 137(1), pages 45-66, July.
    16. Anna Khmelnitskaya, 2010. "Values for rooted-tree and sink-tree digraph games and sharing a river," Theory and Decision, Springer, vol. 69(4), pages 657-669, October.
    17. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    18. Albizuri, M.J. & Aurrecoechea, J. & Zarzuelo, J.M., 2006. "Configuration values: Extensions of the coalitional Owen value," Games and Economic Behavior, Elsevier, vol. 57(1), pages 1-17, October.
    19. Mishra, D. & Talman, A.J.J., 2009. "A Characterization of the Average Tree Solution for Cycle-Free Graph Games," Discussion Paper 2009-17, Tilburg University, Center for Economic Research.
    20. Derks, Jean & Peters, Hans, 1993. "A Shapley Value for Games with Restricted Coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 351-360.
    21. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    2. Sylvain Béal & André Casajus & Frank Huettner, 2018. "Efficient extensions of communication values," Annals of Operations Research, Springer, vol. 264(1), pages 41-56, May.
    3. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    4. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    5. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    6. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    7. David Lowing & Kevin Techer, 2021. "Marginalism, Egalitarianism and E ciency in Multi-Choice Games," Working Papers halshs-03334056, HAL.
    8. David Lowing & Makoto Yokoo, 2023. "Sharing values for multi-choice games: an axiomatic approach," Working Papers hal-04018735, HAL.
    9. Lowing, David & Techer, Kevin, 2022. "Priority relations and cooperation with multiple activity levels," Journal of Mathematical Economics, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    2. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    3. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    4. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    5. Sylvain Béal & Eric Rémila & Philippe Solal, 2022. "Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 818-849, May.
    6. David Lowing & Kevin Techer, 2021. "Marginalism, Egalitarianism and E ciency in Multi-Choice Games," Working Papers halshs-03334056, HAL.
    7. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    8. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    9. Michel Grabisch & Lijue Xie, 2011. "The restricted core of games on distributive lattices: how to share benefits in a hierarchy," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 189-208, April.
    10. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
    11. Michel Grabisch & Lijue Xie, 2008. "The core of games on distributive lattices: how to share benefits in a hierarchy," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00344802, HAL.
    12. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    13. Lowing, David & Techer, Kevin, 2022. "Priority relations and cooperation with multiple activity levels," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    14. M. Albizuri, 2009. "The multichoice coalition value," Annals of Operations Research, Springer, vol. 172(1), pages 363-374, November.
    15. Yu-Hsien Liao, 2012. "Converse consistent enlargements of the unit-level-core of the multi-choice games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 743-753, December.
    16. Branzei, R. & Tijs, S. & Zarzuelo, J., 2009. "Convex multi-choice games: Characterizations and monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 198(2), pages 571-575, October.
    17. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    18. Anna Khmelnitskaya & Gerard van der Laan & Dolf Talman, 2016. "Centrality Rewarding Shapley and Myerson Values for Undirected Graph Games," Tinbergen Institute Discussion Papers 16-070/II, Tinbergen Institute.
    19. repec:hal:pseose:hal-00803233 is not listed on IDEAS
    20. Sylvain Béal & Eric Rémila & Philippe Solal, 2012. "Compensations in the Shapley value and the compensation solutions for graph games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 157-178, February.
    21. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "The sequential equal surplus division for sharing a river," MPRA Paper 37346, University Library of Munich, Germany.

    More about this item

    Keywords

    Average tree solution; Communication graph; (Pre-)core; Hierarchical outcomes; Multi-choice games;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:196:y:2012:i:1:p:27-51:10.1007/s10479-012-1150-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.