IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-00666821.html
   My bibliography  Save this paper

A model of influence with a continuum of actions

Author

Listed:
  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Agnieszka Rusinowska

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We generalize a two-action (yes-no) model of influence to a framework in which every player has a continuum of actions, among which he has to choose one. We assume the set of actions to be an interval. Each player has an inclination to choose one of the actions. Due to influence among players, the final decision of a player, i.e., his choice of one action, may be different from his original inclination. In particular, a coalition of players with the same inclination may influence another player with different inclination, and as a result of this influence, the decision of the player is closer to the inclination of the influencing coalition than his inclination was. We introduce a measure of such a positive influence of a coalition on a player. Several unanimous influence functions in this generalized framework are considered. Also the set of fixed points under a given influence function is analyzed. Furthermore, we study linear influence functions and discuss their convergence. For a linear unanimous function, we find necessary and sufficient conditions for the existence of the positive influence of a coalition on a player, and we calculate the value of the influence index. We also introduce a measure of a negative influence of a coalition on a player.

Suggested Citation

  • Michel Grabisch & Agnieszka Rusinowska, 2011. "A model of influence with a continuum of actions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00666821, HAL.
  • Handle: RePEc:hal:cesptp:hal-00666821
    DOI: 10.1016/j.jmateco.2011.08.004
    Note: View the original document on HAL open archive server: https://hal.science/hal-00666821
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00666821/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jmateco.2011.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wu-Hsiung Huang, 2004. "Is proximity preservation rational in social choice theory?," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(3), pages 315-332, December.
    2. Michel Grabisch & Agnieszka Rusinowska, 2010. "A model of influence in a social network," Theory and Decision, Springer, vol. 69(1), pages 69-96, July.
    3. Michel Grabisch & Agnieszka Rusinowska, 2010. "A model of influence with an ordered set of possible actions," Theory and Decision, Springer, vol. 69(4), pages 635-656, October.
    4. Benjamin Golub & Matthew O. Jackson, 2010. "Naïve Learning in Social Networks and the Wisdom of Crowds," American Economic Journal: Microeconomics, American Economic Association, vol. 2(1), pages 112-149, February.
    5. Rama Cont & Matthias Loewe, 2010. "Social distance, heterogeneity and social interactions," Post-Print hal-00545746, HAL.
    6. Bolger, E M, 1986. "Power Indices for Multicandidate Voting Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 175-186.
    7. Dan S. Felsenthal & Moshé Machover, 1998. "The Measurement of Voting Power," Books, Edward Elgar Publishing, number 1489.
    8. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    9. Abdou, J, 1988. "Neutral Veto Correspondences with a Continuum of Alternatives," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 135-164.
    10. MoshÊ Machover & Dan S. Felsenthal, 1997. "Ternary Voting Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(3), pages 335-351.
    11. Peter Borm & René van den Brink & Marco Slikker, 2002. "An Iterative Procedure for Evaluating Digraph Competitions," Annals of Operations Research, Springer, vol. 109(1), pages 61-75, January.
    12. Edward M. Bolger, 2000. "A consistent value for games with n players and r alternatives," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 93-99.
    13. Edward M. Bolger, 2002. "Characterizations of two power indices for voting games with r alternatives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(4), pages 709-721.
    14. Josep Freixas & William S. Zwicker, 2003. "Weighted voting, abstention, and multiple levels of approval," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 21(3), pages 399-431, December.
    15. Lorenz, Jan, 2005. "A stabilization theorem for dynamics of continuous opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 217-223.
    16. Josep Freixas, 2005. "Banzhaf Measures for Games with Several Levels of Approval in the Input and Output," Annals of Operations Research, Springer, vol. 137(1), pages 45-66, July.
    17. Yang, J.-H. Steffi, 2009. "Social network influence and market instability," Journal of Mathematical Economics, Elsevier, vol. 45(3-4), pages 257-276, March.
    18. Dan S. Felsenthal & MoshÚ Machover, 2002. "Models and Reality: the Curios Case of the Absent Abstention," Homo Oeconomicus, Institute of SocioEconomics, vol. 19, pages 297-310.
    19. Bolger, Edward M, 1993. "A Value for Games with n Players and r Alternatives," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(4), pages 319-334.
    20. Cont, Rama & Löwe, Matthias, 2010. "Social distance, heterogeneity and social interactions," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 572-590, July.
    21. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    22. Wu-Hsiung Huang, 2009. "Is a continuous rational social aggregation impossible on continuum spaces?," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 32(4), pages 635-686, May.
    23. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    2. Agnieszka Rusinowska & Rudolf Berghammer & Harrie de Swart & Michel Grabisch, 2011. "Social networks: Prestige, centrality, and influence (Invited paper)," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00633859, HAL.
    3. Sascha Kurz, 2014. "Measuring Voting Power in Convex Policy Spaces," Economies, MDPI, vol. 2(1), pages 1-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch & Agnieszka Rusinowska, 2009. "A model of influence with a continuum of actions," Post-Print halshs-00464460, HAL.
    2. Michel Grabisch & Agnieszka Rusinowska, 2010. "A model of influence with an ordered set of possible actions," Theory and Decision, Springer, vol. 69(4), pages 635-656, October.
    3. Grabisch, Michel & Rusinowska, Agnieszka, 2011. "Influence functions, followers and command games," Games and Economic Behavior, Elsevier, vol. 72(1), pages 123-138, May.
    4. René van den Brink & Agnieszka Rusinowska & Frank Steffen, 2009. "Measuring Power and Satisfaction in Societies with Opinion Leaders: Dictator and Opinion Leader Properties," Tinbergen Institute Discussion Papers 09-052/1, Tinbergen Institute.
    5. Sascha Kurz, 2014. "Measuring Voting Power in Convex Policy Spaces," Economies, MDPI, vol. 2(1), pages 1-33, March.
    6. Sébastien Courtin & Zéphirin Nganmeni & Bertrand Tchantcho, 2016. "The Shapley–Shubik power index for dichotomous multi-type games," Theory and Decision, Springer, vol. 81(3), pages 413-426, September.
    7. René Brink & Agnieszka Rusinowska & Frank Steffen, 2013. "Measuring power and satisfaction in societies with opinion leaders: an axiomatization," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 671-683, September.
    8. Freixas, Josep & Zwicker, William S., 2009. "Anonymous yes-no voting with abstention and multiple levels of approval," Games and Economic Behavior, Elsevier, vol. 67(2), pages 428-444, November.
    9. Josep Freixas, 2005. "Banzhaf Measures for Games with Several Levels of Approval in the Input and Output," Annals of Operations Research, Springer, vol. 137(1), pages 45-66, July.
    10. Josep Freixas & Roberto Lucchetti, 2016. "Power in voting rules with abstention: an axiomatization of a two components power index," Annals of Operations Research, Springer, vol. 244(2), pages 455-474, September.
    11. Courtin, Sébastien & Nganmeni, Zéphirin & Tchantcho, Bertrand, 2017. "Dichotomous multi-type games with a coalition structure," Mathematical Social Sciences, Elsevier, vol. 86(C), pages 9-17.
    12. Agnieszka Rusinowska & Rudolf Berghammer & Harrie de Swart & Michel Grabisch, 2011. "Social networks: Prestige, centrality, and influence (Invited paper)," Post-Print hal-00633859, HAL.
    13. Bilbao, J.M. & Jiménez, N. & López, J.J., 2010. "The selectope for bicooperative games," European Journal of Operational Research, Elsevier, vol. 204(3), pages 522-532, August.
    14. Michel Grabisch & Agnieszka Rusinowska, 2010. "Iterating influence between players in a social network," Post-Print halshs-00543840, HAL.
    15. Kurz, Sascha & Mayer, Alexander & Napel, Stefan, 2021. "Influence in weighted committees," European Economic Review, Elsevier, vol. 132(C).
    16. Josep Freixas & Montserrat Pons, 2021. "An Appropriate Way to Extend the Banzhaf Index for Multiple Levels of Approval," Group Decision and Negotiation, Springer, vol. 30(2), pages 447-462, April.
    17. Pongou, Roland & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Power theories for multi-choice organizations and political rules: Rank-order equivalence," Operations Research Perspectives, Elsevier, vol. 1(1), pages 42-49.
    18. Grabisch, Michel & Rusinowska, Agnieszka, 2013. "A model of influence based on aggregation functions," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 316-330.
    19. repec:hal:pseose:halshs-00977005 is not listed on IDEAS
    20. Emmanuel Maruani & Michel Grabisch & Agnieszka Rusinowska, 2011. "A study of the dynamic of influence through differential equations," Documents de travail du Centre d'Economie de la Sorbonne 11022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    21. Michel Grabisch & Agnieszka Rusinowska, 2016. "Determining models of influence," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(2), pages 69-85.

    More about this item

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D7 - Microeconomics - - Analysis of Collective Decision-Making

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-00666821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.