IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04097838.html
   My bibliography  Save this paper

Priority relations and cooperation with multiple activity levels

Author

Listed:
  • David Lowing

    (Kyushu University)

  • Kevin Techer

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - UL2 - Université Lumière - Lyon 2 - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper analyzes cooperation situations between heterogeneous players. It considers two types of heterogeneity. First, the players are differentiated with respect to a priority structure. This structure captures asymmetries between players, which may reflect exogenous rights, different needs, merit, or hierarchical constraints. Second, each player may have different cooperation possibilities represented by a set of activity levels. To analyze these situations, we enrich the model of multi-choice games, which is a natural extension of transferable utility games, with a priority structure. A new value on the class of multi-choice games with a priority structure is introduced. To accommodate the different activity levels and the asymmetries between players, this value follows an allocation process based on a lexicographic procedure. New axioms for multi-choice games with a priority structure are introduced. These axioms endogenously determine the lexicographic procedure used to define the value. Two axiomatic characterizations of this value are provided.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • David Lowing & Kevin Techer, 2022. "Priority relations and cooperation with multiple activity levels," Post-Print hal-04097838, HAL.
  • Handle: RePEc:hal:journl:hal-04097838
    DOI: 10.1016/j.jmateco.2022.102740
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    2. Michael Jones & Jennifer Wilson, 2013. "Two-step coalition values for multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 65-99, February.
    3. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    4. Hervé Moulin, 2000. "Priority Rules and Other Asymmetric Rationing Methods," Econometrica, Econometric Society, vol. 68(3), pages 643-684, May.
    5. Hsiao, Chih-Ru & Raghavan, T E S, 1992. "Monotonicity and Dummy Free Property for Multi-choice Cooperative Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 301-312.
    6. Jean J. M. Derks & Hans H. Haller, 1999. "Null Players Out? Linear Values For Games With Variable Supports," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 301-314.
    7. Thomson, William, 2015. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: An update," Mathematical Social Sciences, Elsevier, vol. 74(C), pages 41-59.
    8. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    9. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    10. José Zarzuelo & Marco Slikker & Flip Klijn, 1999. "Characterizations of a multi-choice value," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 521-532.
    11. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    12. Albizuri, M.J. & Dietzenbacher, B.J. & Zarzuelo, J.M., 2020. "Bargaining with independence of higher or irrelevant claims," Journal of Mathematical Economics, Elsevier, vol. 91(C), pages 11-17.
    13. Erik Ansink & Hans-Peter Weikard, 2015. "Composition properties in the river claims problem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 807-831, April.
    14. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    15. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    16. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Moulin, Herve & Shenker, Scott, 1992. "Serial Cost Sharing," Econometrica, Econometric Society, vol. 60(5), pages 1009-1037, September.
    18. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
    19. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    20. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    21. M. Albizuri, 2009. "The multichoice coalition value," Annals of Operations Research, Springer, vol. 172(1), pages 363-374, November.
    22. Yan-An Hwang & Yu-Hsien Liao, 2009. "Equivalence theorem, consistency and axiomatizations of a multi-choice value," Computational Optimization and Applications, Springer, vol. 45(4), pages 597-613, December.
    23. R. Branzei & E. Gutiérrez & N. Llorca & J. Sánchez-Soriano, 2021. "Does it make sense to analyse a two-sided market as a multi-choice game?," Annals of Operations Research, Springer, vol. 301(1), pages 17-40, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    2. David Lowing & Léa Munich & Kevin Techer, 2024. "Allocating the common costs of a public service operator: an axiomatic approach," Working Papers of BETA 2024-03, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    3. David Lowing & Léa Munich & Kevin Techer, 2024. "Allocating the common costs of a public service operator: an axiomatic approach," Working Papers 2024-05, CRESE.
    4. David Lowing & Makoto Yokoo, 2023. "Sharing values for multi-choice games: an axiomatic approach," Working Papers hal-04018735, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    2. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    3. David Lowing & Kevin Techer, 2021. "Marginalism, Egalitarianism and E ciency in Multi-Choice Games," Working Papers halshs-03334056, HAL.
    4. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    5. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    6. David Lowing & Makoto Yokoo, 2023. "Sharing values for multi-choice games: an axiomatic approach," Working Papers hal-04018735, HAL.
    7. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
    8. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    9. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    10. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    11. Schouten, Jop, 2022. "Cooperation, allocation and strategy in interactive decision-making," Other publications TiSEM d5d41448-8033-4f6b-8ec0-c, Tilburg University, School of Economics and Management.
    12. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    13. Txus Ortells & Juan Santos, 2011. "The pseudo-average rule: bankruptcy, cost allocation and bargaining," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(1), pages 55-73, February.
    14. Jingyi Xue, 2018. "Fair division with uncertain needs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(1), pages 105-136, June.
    15. Jaume García-Segarra & Miguel Ginés-Vilar, 2023. "Additive adjudication of conflicting claims," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 93-116, March.
    16. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2021. "On the Difficulty of Budget Allocation in Claims Problems with Indivisible Items and Prices," Group Decision and Negotiation, Springer, vol. 30(5), pages 1133-1159, October.
    17. Lei Li & Xueliang Li, 2011. "The covering values for acyclic digraph games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 697-718, November.
    18. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    19. Baron, Richard & Béal, Sylvain & Remila, Eric & Solal, Philippe, 2008. "Average tree solutions for graph games," MPRA Paper 10189, University Library of Munich, Germany.
    20. Rong Zou & Genjiu Xu & Dongshuang Hou, 2023. "Efficient extensions of the Myerson value based on endogenous claims from players," Annals of Operations Research, Springer, vol. 323(1), pages 287-300, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04097838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.