IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v172y2009i1p363-37410.1007-s10479-009-0634-0.html
   My bibliography  Save this article

The multichoice coalition value

Author

Listed:
  • M. Albizuri

Abstract

In this paper we define a solution for multichoice games which is a generalization of the Owen coalition value (Lecture Notes in Economics and Mathematical Systems: Essays in Honor of Oskar Morgenstern, Springer, New York, pp. 76–88, 1977 ) for transferable utility cooperative games and the Egalitarian solution (Peters and Zanks, Ann. Oper. Res. 137, 399–409, 2005 ) for multichoice games. We also prove that this solution can be seen as a generalization of the configuration value and the dual configuration value (Albizuri et al., Games Econ. Behav. 57, 1–17, 2006 ) for transferable utility cooperative games. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • M. Albizuri, 2009. "The multichoice coalition value," Annals of Operations Research, Springer, vol. 172(1), pages 363-374, November.
  • Handle: RePEc:spr:annopr:v:172:y:2009:i:1:p:363-374:10.1007/s10479-009-0634-0
    DOI: 10.1007/s10479-009-0634-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0634-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0634-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans Peters & Horst Zank, 2005. "The Egalitarian Solution for Multichoice Games," Annals of Operations Research, Springer, vol. 137(1), pages 399-409, July.
    2. José Zarzuelo & Marco Slikker & Flip Klijn, 1999. "Characterizations of a multi-choice value," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 521-532.
    3. Emilio Calvo & J. Carlos Santos, 2001. "A value for mixed action-set games," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(1), pages 61-78.
    4. Albizuri, M.J. & Aurrecoechea, J. & Zarzuelo, J.M., 2006. "Configuration values: Extensions of the coalitional Owen value," Games and Economic Behavior, Elsevier, vol. 57(1), pages 1-17, October.
    5. Calvo, Emilio & Santos, Juan Carlos, 2000. "A value for multichoice games," Mathematical Social Sciences, Elsevier, vol. 40(3), pages 341-354, November.
    6. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    7. Derks, Jean & Peters, Hans, 1993. "A Shapley Value for Games with Restricted Coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 351-360.
    8. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Fanyong & Chen, Xiaohong & Zhang, Qiang, 2015. "A coalitional value for games on convex geometries with a coalition structure," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 605-614.
    2. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    3. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    4. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    5. Michael Jones & Jennifer Wilson, 2013. "Two-step coalition values for multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 65-99, February.
    6. David Lowing & Kevin Techer, 2021. "Marginalism, Egalitarianism and E ciency in Multi-Choice Games," Working Papers halshs-03334056, HAL.
    7. Lowing, David & Techer, Kevin, 2022. "Priority relations and cooperation with multiple activity levels," Journal of Mathematical Economics, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    2. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    3. Fanyong Meng & Qiang Zhang & Xiaohong Chen, 2017. "Fuzzy Multichoice Games with Fuzzy Characteristic Functions," Group Decision and Negotiation, Springer, vol. 26(3), pages 565-595, May.
    4. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    5. David Lowing & Kevin Techer, 2021. "Marginalism, Egalitarianism and E ciency in Multi-Choice Games," Working Papers halshs-03334056, HAL.
    6. Larrea, C. & Santos, J.C., 2007. "A characterization of the pseudo-average cost method," Mathematical Social Sciences, Elsevier, vol. 53(2), pages 140-149, March.
    7. Brânzei, R. & Tijs, S.H. & Zarzuelo, J., 2007. "Convex Multi-Choice Cooperative Games and their Monotonic Allocation Schemes," Other publications TiSEM 5549df35-acc3-4890-be43-4, Tilburg University, School of Economics and Management.
    8. Yu-Hsien Liao, 2012. "Converse consistent enlargements of the unit-level-core of the multi-choice games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 743-753, December.
    9. Branzei, R. & Tijs, S. & Zarzuelo, J., 2009. "Convex multi-choice games: Characterizations and monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 198(2), pages 571-575, October.
    10. Brânzei, R. & Tijs, S.H. & Zarzuelo, J., 2007. "Convex Multi-Choice Cooperative Games and their Monotonic Allocation Schemes," Discussion Paper 2007-54, Tilburg University, Center for Economic Research.
    11. Hsiao, Chih-Ru & Chiou, Wen-Lin, 2009. "Modeling a Multi-Choice Game Based on the Spirit of Equal Job opportunities," MPRA Paper 15285, University Library of Munich, Germany.
    12. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2017. "Axiomatization of an importance index for Generalized Additive Independence models," Post-Print halshs-01659796, HAL.
    13. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Multi-Choice Total Clan Games : Characterizations and Solution Concepts," Other publications TiSEM 31aee267-f432-46c8-b078-1, Tilburg University, School of Economics and Management.
    14. Hsiao, Chih-Ru & Chiou, Wen-Lin, 2009. "Modeling a Multi-Choice Game Based on the Spirit of Equal Job Opportunities (New)," MPRA Paper 16023, University Library of Munich, Germany.
    15. GRABISCH, Michel & LABREUCHE, Christophe & RIDAOUI, Mustapha, 2019. "On importance indices in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 277(1), pages 269-283.
    16. Michael Jones & Jennifer Wilson, 2010. "Multilinear extensions and values for multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(1), pages 145-169, August.
    17. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Multi-Choice Total Clan Games : Characterizations and Solution Concepts," Discussion Paper 2007-77, Tilburg University, Center for Economic Research.
    18. repec:ebl:ecbull:v:3:y:2008:i:43:p:1-7 is not listed on IDEAS
    19. David Lowing & Makoto Yokoo, 2023. "Sharing values for multi-choice games: an axiomatic approach," Working Papers hal-04018735, HAL.
    20. Yan-An Hwang & Yu-Hsien Liao, 2008. "The solutions for multi-choice games: TU games approach," Economics Bulletin, AccessEcon, vol. 3(43), pages 1-7.
    21. Hwang, Yan-An & Liao, Yu-Hsien, 2008. "Potential approach and characterizations of a Shapley value in multi-choice games," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 321-335, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:172:y:2009:i:1:p:363-374:10.1007/s10479-009-0634-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.