IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp3800.html
   My bibliography  Save this paper

Alternative Approaches to Evaluation in Empirical Microeconomics

Author

Listed:
  • Blundell, Richard

    (University College London)

  • Costa Dias, Monica

    (Institute for Fiscal Studies, London)

Abstract

This paper reviews some of the most popular policy evaluation methods in empirical microeconomics: social experiments, natural experiments, matching, instrumental variables, discontinuity design, and control functions. It discusses identification of traditionally used average parameters and more complex distributional parameters. The adequacy, assumptions, and data requirements of each approach are discussed drawing on empirical evidence from the education and employment policy evaluation literature. A workhorse simulation model of education returns is used throughout the paper to discuss and illustrate each approach. The full set of STATA datasets and do-files are available free online and can be used to reproduce all estimation and simulation results.

Suggested Citation

  • Blundell, Richard & Costa Dias, Monica, 2008. "Alternative Approaches to Evaluation in Empirical Microeconomics," IZA Discussion Papers 3800, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp3800
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp3800.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    3. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2002. "Removing the Veil of Ignorance in Assessing the Distributional Impacts of Social Policies," NBER Working Papers 8840, National Bureau of Economic Research, Inc.
    4. Austan Goolsbee, 2000. "What Happens When You Tax the Rich? Evidence from Executive Compensation," Journal of Political Economy, University of Chicago Press, vol. 108(2), pages 352-378, April.
    5. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    6. Nada Eissa & Jeffrey B. Liebman, 1996. "Labor Supply Response to the Earned Income Tax Credit," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(2), pages 605-637.
    7. Blundell, Richard & Macurdy, Thomas, 1999. "Labor supply: A review of alternative approaches," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 27, pages 1559-1695, Elsevier.
    8. Battistin, Erich & Rettore, Enrico, 2008. "Ineligibles and eligible non-participants as a double comparison group in regression-discontinuity designs," Journal of Econometrics, Elsevier, vol. 142(2), pages 715-730, February.
    9. Lindsey, Lawrence B., 1987. "Individual taxpayer response to tax cuts: 1982-1984 : With implications for the revenue maximizing tax rate," Journal of Public Economics, Elsevier, vol. 33(2), pages 173-206, July.
    10. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    11. David Card & Lara D. Shore-Sheppard, 2004. "Using Discontinuous Eligibility Rules to Identify the Effects of the Federal Medicaid Expansions on Low-Income Children," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 752-766, August.
    12. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818742, September.
    13. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    14. Edwin Leuven & Barbara Sianesi, 2003. "PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing," Statistical Software Components S432001, Boston College Department of Economics, revised 01 Feb 2018.
    15. James M. Poterba, 1993. "Tax Policy and the Economy, Volume 7," NBER Books, National Bureau of Economic Research, Inc, number pote93-1.
    16. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    17. Barbara Sianesi, 2001. "Propensity score matching," United Kingdom Stata Users' Group Meetings 2001 12, Stata Users Group, revised 23 Aug 2001.
    18. Arulampalam, W. & Robin A. Naylor & Jeremy P. Smith, 2002. "University of Warwick," Royal Economic Society Annual Conference 2002 9, Royal Economic Society.
    19. Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 497-517.
    20. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    21. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    22. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    23. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    24. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    25. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524124, September.
    26. Jaap H. Abbring & Gerard J. van den Berg, 2003. "The Nonparametric Identification of Treatment Effects in Duration Models," Econometrica, Econometric Society, vol. 71(5), pages 1491-1517, September.
    27. Feldstein, Martin, 1995. "The Effect of Marginal Tax Rates on Taxable Income: A Panel Study of the 1986 Tax Reform Act," Journal of Political Economy, University of Chicago Press, vol. 103(3), pages 551-572, June.
    28. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    29. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    30. Richard Blundell & Alan Duncan & Costas Meghir, 1998. "Estimating Labor Supply Responses Using Tax Reforms," Econometrica, Econometric Society, vol. 66(4), pages 827-862, July.
    31. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    32. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818728, September.
    33. Richard Blundell & Lorraine Dearden & Barbara Sianesi, 2003. "Evaluating the impact of education on earnings in the UK: Models, methods and results from the NCDS," IFS Working Papers W03/20, Institute for Fiscal Studies.
    34. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524131, September.
    35. Kenneth I. Wolpin & Petra E. Todd, 2006. "Assessing the Impact of a School Subsidy Program in Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child Schooling and Fertility," American Economic Review, American Economic Association, vol. 96(5), pages 1384-1417, December.
    36. Bassi, Laurie J, 1984. "Estimating the Effect of Training Programs with Non-Random Selection," The Review of Economics and Statistics, MIT Press, vol. 66(1), pages 36-43, February.
    37. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    38. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    39. Gary Burtless, 1985. "Are Targeted Wage Subsidies Harmful? Evidence from a Wage Voucher Experiment," ILR Review, Cornell University, ILR School, vol. 39(1), pages 105-114, October.
    40. Lee, David S., 2008. "Randomized experiments from non-random selection in U.S. House elections," Journal of Econometrics, Elsevier, vol. 142(2), pages 675-697, February.
    41. Markus Frölich, 2006. "A Note on Parametric and Nonparametric Regression in the Presence of Endogenous Control Variables," University of St. Gallen Department of Economics working paper series 2006 2006-11, Department of Economics, University of St. Gallen.
    42. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    43. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    44. Richard Blundell & Monica Costa Dias & Costas Meghir & John Van Reenen, 2004. "Evaluating the Employment Impact of a Mandatory Job Search Program," Journal of the European Economic Association, MIT Press, vol. 2(4), pages 569-606, June.
    45. Daniel R. Feenberg & James M. Poterba, 1993. "Income Inequality and the Incomes of Very High-Income Taxpayers: Evidence from Tax Returns," NBER Chapters, in: Tax Policy and the Economy, Volume 7, pages 145-177, National Bureau of Economic Research, Inc.
    46. Ten Have, Thomas R. & Elliott, Michael R. & Joffe, Marshall & Zanutto, Elaine & Datto, Catherine, 2004. "Causal Models for Randomized Physician Encouragement Trials in Treating Primary Care Depression," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 16-25, January.
    47. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    48. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    49. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    50. Jerry A. Hausman & David A. Wise, 1985. "Social Experimentation," NBER Books, National Bureau of Economic Research, Inc, number haus85-1.
    51. Heckman, J.J. & Hotz, V.J., 1988. "Choosing Among Alternative Nonexperimental Methods For Estimating The Impact Of Social Programs: The Case Of Manpower Training," University of Chicago - Economics Research Center 88-12, Chicago - Economics Research Center.
    52. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524117, September.
    53. Richard Blundell & Monica Costa Dias & Costas Meghir & John Van Reenen, 2001. "Evaluating the employment impact of a mandatory job search assistance program," IFS Working Papers W01/20, Institute for Fiscal Studies.
    54. James Heckman & Edward Vytlacil, 1998. "Instrumental Variables Methods for the Correlated Random Coefficient Model: Estimating the Average Rate of Return to Schooling When the Return is Correlated with Schooling," Journal of Human Resources, University of Wisconsin Press, vol. 33(4), pages 974-987.
    55. Richard Blundell & Monica Costa Dias, 2000. "Evaluation methods for non-experimental data," Fiscal Studies, Institute for Fiscal Studies, vol. 21(4), pages 427-468, January.
    56. Richard Blundell & James L. Powell, 2001. "Endogeneity in nonparametric and semiparametric regression models," CeMMAP working papers 09/01, Institute for Fiscal Studies.
    57. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    58. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818735, September.
    59. James J. Heckman & Jeffrey A. Smith, 1999. "The Pre-Program Earnings Dip and the Determinants of Participation in a Social Program: Implications for Simple Program Evaluation Strategies," NBER Working Papers 6983, National Bureau of Economic Research, Inc.
    60. Alberto Abadie & Joshua D. Angrist & Guido W. Imbens, 1998. "Instrumental Variables Estimation of Quantile Treatment Effects," NBER Technical Working Papers 0229, National Bureau of Economic Research, Inc.
    61. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
    62. Heckman, James J & Smith, Jeffrey A, 1999. "The Pre-programme Earnings Dip and the Determinants of Participation in a Social Programme. Implications for Simple Programme Evaluation Strategies," Economic Journal, Royal Economic Society, vol. 109(457), pages 313-348, July.
    63. Wilbert Van Der Klaauw, 2008. "Regression–Discontinuity Analysis: A Survey of Recent Developments in Economics," LABOUR, CEIS, vol. 22(2), pages 219-245, June.
    64. Robert Moffit, 2007. "Estimating Marginal Treatment Effects in Heterogeneous Populations," Economics Working Paper Archive 539, The Johns Hopkins University,Department of Economics.
    65. Hsiao,Cheng & Morimune,Kimio & Powell,James L. (ed.), 2001. "Nonlinear Statistical Modeling," Cambridge Books, Cambridge University Press, number 9780521662468, September.
    66. Hausman, Jerry A. & Wise, David A. (ed.), 1985. "Social Experimentation," National Bureau of Economic Research Books, University of Chicago Press, number 9780226319407, August.
    67. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 33-58.
    68. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    69. Theresa J. Devine & James J. Heckman, 1996. "The Economics of Eligibility Rules for a Social Program: A Study of the Job Training Partnership Act (JTPA)--A Summary Report," Canadian Journal of Economics, Canadian Economics Association, vol. 29(s1), pages 99-104, April.
    70. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    71. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228, Elsevier.
    72. James M. Poterba (ed.), 1993. "Tax Policy and the Economy, Volume 7," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262660814, April.
    73. Jerry A. Hausman & David A. Wise, 1985. "Introduction to "Social Experimentation"," NBER Chapters, in: Social Experimentation, pages 1-10, National Bureau of Economic Research, Inc.
    74. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    75. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    3. Heckman, James J., 2010. "The Assumptions Underlying Evaluation Estimators," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    4. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    5. Richard Blundell & Lorraine Dearden & Barbara Sianesi, 2003. "Evaluating the impact of education on earnings in the UK: Models, methods and results from the NCDS," IFS Working Papers W03/20, Institute for Fiscal Studies.
    6. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.
    7. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    8. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    9. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    10. Deborah A. Cobb‐Clark & Thomas Crossley, 2003. "Econometrics for Evaluations: An Introduction to Recent Developments," The Economic Record, The Economic Society of Australia, vol. 79(247), pages 491-511, December.
    11. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    12. Heckman, James J. & Pinto, Rodrigo, 2022. "Causality and Econometrics," IZA Discussion Papers 15081, Institute of Labor Economics (IZA).
    13. Christian Durán, 2004. "Evaluación microeconométrica de las políticas públicas de empleo: aspectos metodológicos," Hacienda Pública Española / Review of Public Economics, IEF, vol. 170(3), pages 107-133, september.
    14. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    15. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    16. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    17. Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021. "Outliers in Semi-Parametric Estimation of Treatment Effects," Econometrics, MDPI, vol. 9(2), pages 1-32, April.
    18. Bryan S. Graham & James Powell, 2008. "Identification and Estimation of 'Irregular' Correlated Random Coefficient Models," NBER Working Papers 14469, National Bureau of Economic Research, Inc.
    19. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    20. Chabé-Ferret, Sylvain, 2015. "Analysis of the bias of Matching and Difference-in-Difference under alternative earnings and selection processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 110-123.

    More about this item

    Keywords

    evaluation methods;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp3800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.