IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/6699.html
   My bibliography  Save this paper

Characterizing Selection Bias Using Experimental Data

Author

Listed:
  • James Heckman
  • Hidehiko Ichimura
  • Jeffrey Smith
  • Petra Todd

Abstract

This paper develops and applies semiparametric econometric methods to estimate the form of selection bias that arises from using nonexperimental comparison groups to evaluate social programs and to test the identifying assumptions that justify three widely-used classes of estimators and our extensions of them: (a) the method of matching; (b) the classical econometric selection model which represents the bias solely as a function of the probability of participation; and (c) the method of difference-in-differences. Using data from an experiment on a prototypical social program combined with unusually rich data from a nonexperimental comparison group, we reject the assumptions justifying matching and our extensions of that method but find evidence in support of the index-sufficient selection bias model and the assumptions that justify application of a conditional semiparametric version of the method of difference-in-difference. Fa comparable people and to appropriately weight participants and nonparticipants a sources of selection bias as conveniently measured. We present a rigorous defin bias and find that in our data it is a small component of conventially meausred it is still substantial when compared with experimentally-estimated program impa matching participants to comparison group members in the same labor market, givi same questionnaire, and making sure they have comparable characteristics substan the performance of any econometric program evaluation estimator. We show how t analysis to estimate the impact of treatment on the treated using ordinary obser

Suggested Citation

  • James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," NBER Working Papers 6699, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:6699
    Note: LS PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w6699.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    2. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    3. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    2. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    3. Angrisani, Marco & Atella, Vincenzo & Brunetti, Marianna, 2018. "Public health insurance and household portfolio Choices: Unravelling financial “Side Effects” of Medicare," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 198-212.
    4. Stephen Machin & Olivier Marie, 2011. "Crime And Police Resources: The Street Crime Initiative," Journal of the European Economic Association, European Economic Association, vol. 9(4), pages 678-701, August.
    5. Mano, Yukichi & Akoten, John & Yoshino, Yutaka & Sonobe, Tetsushi, 2014. "Teaching KAIZEN to small business owners: An experiment in a metalworking cluster in Nairobi," Journal of the Japanese and International Economies, Elsevier, vol. 33(C), pages 25-42.
    6. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    7. Regner, Hakan, 2002. "A nonexperimental evaluation of training programs for the unemployed in Sweden," Labour Economics, Elsevier, vol. 9(2), pages 187-206, April.
    8. Greenstone, Michael & Gayer, Ted, 2009. "Quasi-experimental and experimental approaches to environmental economics," Journal of Environmental Economics and Management, Elsevier, vol. 57(1), pages 21-44, January.
    9. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    10. Maitra, Pushkar & Mani, Subha, 2017. "Learning and earning: Evidence from a randomized evaluation in India," Labour Economics, Elsevier, vol. 45(C), pages 116-130.
    11. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    12. Graham Cookson & Ioannis Laliotis, 2018. "Promoting normal birth and reducing caesarean section rates: An evaluation of the Rapid Improvement Programme," Health Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 675-689, April.
    13. David Card & Jochen Kluve & Andrea Weber, 2010. "Active Labour Market Policy Evaluations: A Meta-Analysis," Economic Journal, Royal Economic Society, vol. 120(548), pages 452-477, November.
    14. David E. Card & Pablo Ibarraran & Juan Miguel Villa, 2011. "Building in an Evaluation Component for Active Labor Market Programs: A Practitioner's Guide," SPD Working Papers 1101, Inter-American Development Bank, Office of Strategic Planning and Development Effectiveness (SPD).
    15. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    16. Jens Ruhose & Stephan L. Thomsen & Insa Weilage, 2018. "The Wider Benefits of Adult Learning: Work-Related Training and Social Capital," CESifo Working Paper Series 7268, CESifo.
    17. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    18. James J. Heckman & Jeffrey A. Smith, 1999. "The Pre-Program Earnings Dip and the Determinants of Participation in a Social Program: Implications for Simple Program Evaluation Strategies," NBER Working Papers 6983, National Bureau of Economic Research, Inc.
    19. Brian Bell & Richard Blundell & John Reenen, 1999. "Getting the Unemployed Back to Work: The Role of Targeted Wage Subsidies," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 6(3), pages 339-360, August.
    20. Gueorgui Kambourov & Iourii Manovskii & Miana Plesca, 2020. "Occupational mobility and the returns to training," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(1), pages 174-211, February.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:6699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.