IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v369y2024ics0306261924009802.html
   My bibliography  Save this article

Stability improvement of the advanced electrochemical CO2 capture process with high-capacity polyamine solvents

Author

Listed:
  • Mao, Yuanhao
  • Sultan, Sayd
  • Fan, Huifeng
  • Yu, Yunsong
  • Wu, Xiaomei
  • Zhang, Zaoxiao

Abstract

The electrochemically mediated amine regeneration (EMAR) technology is regarded as a promising electrochemical carbon capture method which has the potential to be cost-effective, environmentally friendly and energy efficient. Extensive research has been conducted on the EMAR process, ranging from the mechanism to technical and economic evaluations. However, the practical application of this technology still encounters certain challenges, including limited absorbent options, unclear reaction mechanism, poor copper cycling performance and equipment corrosion hazards. To solve these problems, ethylenediamine (EDA), diethylenetriamine (DETA), and triethylenetetramine (TETA) are selected as potential absorbents for the EMAR process in this work. The different Cu-polyamine systems receive comprehensive investigations including electrochemical characterization, analysis of cathodic nucleation mechanism, corrosion assessment, and absorption/desorption performance evaluation. We experimentally reveal the electrodeposition mechanism of copper ion and predict the quality of copper deposited layers in different polyamine solutions. In addition, the results show that the adsorption of copper-amine ionic complexes on the surface of carbon steel in the EMAR system will enhance the corrosion resistance. Based on the Cu-DETA system, we achieved a low energy consumption of 36.67 kJe/mol CO2 at a current density of 0.01 A/cm2, which is very competitive with the state-of-the-art EMAR systems.

Suggested Citation

  • Mao, Yuanhao & Sultan, Sayd & Fan, Huifeng & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2024. "Stability improvement of the advanced electrochemical CO2 capture process with high-capacity polyamine solvents," Applied Energy, Elsevier, vol. 369(C).
  • Handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009802
    DOI: 10.1016/j.apenergy.2024.123597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924009802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Huifeng & Mao, Yuanhao & Gao, Jifeng & Tong, Shuyue & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2023. "Combined experimental and computational study for the electrode process of electrochemically mediated amine regeneration (EMAR) CO2 capture," Applied Energy, Elsevier, vol. 350(C).
    2. Tian, Di & Qu, Zhiguo & Zhang, Jianfei, 2023. "Electrochemical condition optimization and techno-economic analysis on the direct CO2 electroreduction of flue gas," Applied Energy, Elsevier, vol. 351(C).
    3. Miao, Yuang & Lu, Huixia & Cui, Shizhang & Zhang, Xu & Zhang, Yusheng & Song, Xinwang & Cheng, Haiying, 2024. "CO2 emissions change in Tianjin: The driving factors and the role of CCS," Applied Energy, Elsevier, vol. 353(PA).
    4. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Wu, Xiaomei & Fan, Huifeng & Mao, Yuanhao & Sharif, Maimoona & Yu, Yunsong & Zhang, Zaoxiao & Liu, Guangxin, 2022. "Systematic study of an energy efficient MEA-based electrochemical CO2 capture process: From mechanism to practical application," Applied Energy, Elsevier, vol. 327(C).
    6. Wang, Miao & Rahimi, Mohammad & Kumar, Amit & Hariharan, Subrahmaniam & Choi, Wonyoung & Hatton, T. Alan, 2019. "Flue gas CO2 capture via electrochemically mediated amine regeneration: System design and performance," Applied Energy, Elsevier, vol. 255(C).
    7. Tianyang Lei & Daoping Wang & Xiang Yu & Shijun Ma & Weichen Zhao & Can Cui & Jing Meng & Shu Tao & Dabo Guan, 2023. "Global iron and steel plant CO2 emissions and carbon-neutrality pathways," Nature, Nature, vol. 622(7983), pages 514-520, October.
    8. Nong, Duy & Simshauser, Paul & Nguyen, Duong Binh, 2021. "Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax," Applied Energy, Elsevier, vol. 298(C).
    9. Wu, Xiaomei & Fan, Huifeng & Sharif, Maimoona & Yu, Yunsong & Wei, Keming & Zhang, Zaoxiao & Liu, Guangxin, 2021. "Electrochemically-mediated amine regeneration of CO2 capture: From electrochemical mechanism to bench-scale visualization study," Applied Energy, Elsevier, vol. 302(C).
    10. Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
    11. Meng, Fanzhi & Meng, Yuan & Ju, Tongyao & Han, Siyu & Lin, Li & Jiang, Jianguo, 2022. "Research progress of aqueous amine solution for CO2 capture: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Zhang, Bin & Niu, Niu & Li, Hao & Wang, Zhaohua, 2023. "Assessing the efforts of coal phaseout for carbon neutrality in China," Applied Energy, Elsevier, vol. 352(C).
    13. Wang, Changhong & Jiang, Kaiqi & Yu, Hai & Yang, Shenghai & Li, Kangkang, 2022. "Copper electrowinning-coupled CO2 capture in solvent based post-combustion capture," Applied Energy, Elsevier, vol. 316(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xiaomei & Fan, Huifeng & Mao, Yuanhao & Sharif, Maimoona & Yu, Yunsong & Zhang, Zaoxiao & Liu, Guangxin, 2022. "Systematic study of an energy efficient MEA-based electrochemical CO2 capture process: From mechanism to practical application," Applied Energy, Elsevier, vol. 327(C).
    2. Fan, Huifeng & Mao, Yuanhao & Gao, Jifeng & Tong, Shuyue & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2023. "Combined experimental and computational study for the electrode process of electrochemically mediated amine regeneration (EMAR) CO2 capture," Applied Energy, Elsevier, vol. 350(C).
    3. Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
    4. D. F. Bruggeman & G. Rothenberg & A. C. Garcia, 2024. "Investigating proton shuttling and electrochemical mechanisms of amines in integrated CO2 capture and utilization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.
    6. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    7. Lorenzo Pellegrini & Murat Arsel & Gorka Muñoa & Guillem Rius-Taberner & Carlos Mena & Martí Orta-Martínez, 2024. "The atlas of unburnable oil for supply-side climate policies," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Kwon, Dohee & Kim, Youngju & Choi, Dongho & Jung, Sungyup & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Enhanced thermochemical valorization of coconut husk through carbon dioxide integration: A sustainable approach to agricultural residue utilization," Applied Energy, Elsevier, vol. 369(C).
    9. Gabriel S. Nambafu & Aaron M. Hollas & Shuyuan Zhang & Peter S. Rice & Daria Boglaienko & John L. Fulton & Miller Li & Qian Huang & Yu Zhu & David M. Reed & Vincent L. Sprenkle & Guosheng Li, 2024. "Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Guo, Jianxin & Zhu, Kaiwei & Cheng, Yonglong, 2024. "Deployment of clean energy technologies towards carbon neutrality under resource constraints," Energy, Elsevier, vol. 295(C).
    11. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).
    12. Han, Sung-Chul & Sung, Hail & Noh, Hye-Won & Mazari, Shaukat Ali & Moon, Jong-Ho & Kim, Kyung-Min, 2024. "Synergistic effect of blended amines on carbon dioxide absorption: Thermodynamic modeling and analysis of regeneration energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    13. Borui Tian & Mingyue Zheng & Wenjie Liu & Yueqing Gu & Yi Xing & Chongchao Pan, 2024. "Impacts of Carbon Border Adjustment Mechanism on the Development of Chinese Steel Enterprises and Government Management Decisions: A Tripartite Evolutionary Game Analysis," Sustainability, MDPI, vol. 16(8), pages 1-32, April.
    14. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Magnus de Witt & Ágúst Valfells & Joan Nymand Larsen & Hlynur Stefánsson, 2022. "Simulation of Pathways toward Low-Carbon Electricity Generation in the Arctic," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    16. Yang, Lin & Li, Yiming & Sun, Jingjing & Zhang, Yinuo & Shao, Jiahuan & Xing, Helong, 2024. "Revisiting the carbon-economic inequality within global value chain considering corporate heterogeneity: Evidence from China's trade," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    17. Wanying Wu & Haibo Zhai & Eugene Holubnyak, 2024. "Technological evolution of large-scale blue hydrogen production toward the U.S. Hydrogen Energy Earthshot," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Jingzhi Zhu & Yuhuan Zhao & Lu Zheng, 2024. "The Impact of the EU Carbon Border Adjustment Mechanism on China’s Exports to the EU," Energies, MDPI, vol. 17(2), pages 1-18, January.
    19. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    20. Farhad Taghizadeh-Hesary, 2023. "Fiscal Policy Instruments and Green Recovery in the Post-Covid-19 era," Economic Change and Restructuring, Springer, vol. 56(5), pages 2917-2920, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.