IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55697-7.html
   My bibliography  Save this article

The global implications of a Russian gas pivot to Asia

Author

Listed:
  • Steve Pye

    (University College London)

  • Michael Bradshaw

    (University of Warwick)

  • James Price

    (University College London)

  • Dan Zhang

    (University College London)

  • Caroline Kuzemko

    (University of Warwick)

  • Jack Sharples

    (Oxford Institute for Energy Studies)

  • Dan Welsby

    (University College London)

  • Paul E. Dodds

    (University College London
    University College London)

Abstract

Recent years have seen unprecedented shifts in global natural gas trade, precipitated in large part by Russia’s war on Ukraine. How this regional conflict impacts the future of natural gas markets is subject to three interconnected factors: (i) Russia’s strategy to regain markets for its gas exports; (ii) Europe’s push towards increased liquified natural gas (LNG) and the pace of its low carbon transition; and (iii) China’s gas demand and how it balances its climate and energy security objectives. A scenario modelling approach is applied to explore the potential implications of this geopolitical crisis. We find that Russia struggles to regain pre-crisis gas export levels, with the degrees of its success contingent on China’s strategy. Compared to 2020, Russia’s gas exports are down by 31–47% in 2040 where new markets are limited and by 13–38% under a pivot to Asia strategy. We demonstrate how integrating energy geopolitics and modelling enhances our understanding of energy futures.

Suggested Citation

  • Steve Pye & Michael Bradshaw & James Price & Dan Zhang & Caroline Kuzemko & Jack Sharples & Dan Welsby & Paul E. Dodds, 2025. "The global implications of a Russian gas pivot to Asia," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55697-7
    DOI: 10.1038/s41467-024-55697-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55697-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55697-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Huppmann & Joeri Rogelj & Elmar Kriegler & Volker Krey & Keywan Riahi, 2018. "A new scenario resource for integrated 1.5 °C research," Nature Climate Change, Nature, vol. 8(12), pages 1027-1030, December.
    2. Oliver Ruhnau & Clemens Stiewe & Jarusch Muessel & Lion Hirth, 2023. "Natural gas savings in Germany during the 2022 energy crisis," Nature Energy, Nature, vol. 8(6), pages 621-628, June.
    3. Moniek de Jong, 2024. "Wind of change: the impact of REPowerEU policy reforms on gas security," Policy Studies, Taylor & Francis Journals, vol. 45(3-4), pages 614-632, May.
    4. Greg Muttitt & James Price & Steve Pye & Dan Welsby, 2023. "Socio-political feasibility of coal power phase-out and its role in mitigation pathways," Nature Climate Change, Nature, vol. 13(2), pages 140-147, February.
    5. Dirk-Jan van de Ven & Shivika Mittal & Ajay Gambhir & Robin D. Lamboll & Haris Doukas & Sara Giarola & Adam Hawkes & Konstantinos Koasidis & Alexandre C. Köberle & Haewon McJeon & Sigit Perdana & Glen, 2023. "A multimodel analysis of post-Glasgow climate targets and feasibility challenges," Nature Climate Change, Nature, vol. 13(6), pages 570-578, June.
    6. Goldthau, Andreas & Sitter, Nick, 2015. "A Liberal Actor in a Realist World: The European Union Regulatory State and the Global Political Economy of Energy," OUP Catalogue, Oxford University Press, number 9780198719595.
    7. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    8. Mathijs Harmsen & Elmar Kriegler & Detlef van Vuuren & Kaj-Ivar van Der Wijst & Gunnar Luderer & Ryna Cui & Olivier Dessens & Laurent Drouet & Johannes Emmerling & Jennifer Morris & Florian Fosse & Di, 2021. "Integrated assessment model diagnostics: key indicators and model evolution," Post-Print hal-03216627, HAL.
    9. Peter Erickson & Harro Asselt & Doug Koplow & Michael Lazarus & Peter Newell & Naomi Oreskes & Geoffrey Supran, 2020. "Why fossil fuel producer subsidies matter," Nature, Nature, vol. 578(7793), pages 1-4, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Yiannis Moustakis & Tobias Nützel & Hao-Wei Wey & Wenkai Bao & Julia Pongratz, 2024. "Temperature overshoot responses to ambitious forestation in an Earth System Model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Draeger, Rebecca & Cunha, Bruno S.L. & Müller-Casseres, Eduardo & Rochedo, Pedro R.R. & Szklo, Alexandre & Schaeffer, Roberto, 2022. "Stranded crude oil resources and just transition: Why do crude oil quality, climate ambitions and land-use emissions matter," Energy, Elsevier, vol. 255(C).
    4. Seck, Gondia S. & Hache, Emmanuel & Sabathier, Jerome & Guedes, Fernanda & Reigstad, Gunhild A. & Straus, Julian & Wolfgang, Ove & Ouassou, Jabir A. & Askeland, Magnus & Hjorth, Ida & Skjelbred, Hans , 2022. "Hydrogen and the decarbonization of the energy system in europe in 2050: A detailed model-based analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. McCulloch, Neil & Natalini, Davide & Hossain, Naomi & Justino, Patricia, 2022. "An exploration of the association between fuel subsidies and fuel riots," World Development, Elsevier, vol. 157(C).
    6. Mangla, Sachin Kumar & Srivastava, Praveen Ranjan & Eachempati, Prajwal & Tiwari, Aviral Kumar, 2024. "Exploring the impact of key performance factors on energy markets: From energy risk management perspectives," Energy Economics, Elsevier, vol. 131(C).
    7. Casari, Marco & Tavoni, Alessandro, 2024. "Climate clubs in the laboratory," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 110(C).
    8. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    9. Jonas van Ouwerkerk & Mauricio Celi Cortés & Najet Nsir & Jingyu Gong & Jan Figgener & Sebastian Zurmühlen & Christian Bußar & Dirk Uwe Sauer, 2024. "Quantifying benefits of renewable investments for German residential Prosumers in times of volatile energy markets," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Chao Wang & Chuyan Shan & Lidong Wang, 2024. "Stranded Asset Impairment Estimates of Thermal Power Companies Under Low-Carbon Transition Scenarios," Sustainability, MDPI, vol. 16(21), pages 1-14, October.
    11. Coppens, Léo & Venmans, Frank, 2025. "The welfare properties of climate targets," Ecological Economics, Elsevier, vol. 228(C).
    12. Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
    13. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    14. Songyan Ren & Peng Wang & Zewei Lin & Daiqing Zhao, 2022. "The Policy Choice and Economic Assessment of High Emissions Industries to Achieve the Carbon Peak Target under Energy Shortage—A Case Study of Guangdong Province," Energies, MDPI, vol. 15(18), pages 1-22, September.
    15. Lola Nacke & Vadim Vinichenko & Aleh Cherp & Avi Jakhmola & Jessica Jewell, 2024. "Compensating affected parties necessary for rapid coal phase-out but expensive if extended to major emitters," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Thomas Hahn & Johannes Morfeldt & Robert Höglund & Mikael Karlsson & Ingo Fetzer, 2024. "Estimating countries’ additional carbon accountability for closing the mitigation gap based on past and future emissions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Mehdi Abbas & Catherine Locatelli, 2019. "Interdependence as a lever for national hybridization: The EU-Russia gas trade [L’hybridation des systèmes institutionnels nationaux dans l’interdépendance. Les échanges gaziers UE-Russie]," Post-Print hal-02472141, HAL.
    19. Locatelli, C. & Abbas, M., 2019. "Interdépendance complexe et hybridation des modèles institutionnels nationaux : le cas des relations énergétique UE-Russie," Working Papers 2019-02, Grenoble Applied Economics Laboratory (GAEL).
    20. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55697-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.