IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v158y2021ics030142152100416x.html
   My bibliography  Save this article

What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects

Author

Listed:
  • Wang, Nan
  • Akimoto, Keigo
  • Nemet, Gregory F.

Abstract

The delivery of operational clean energy projects at scales is essential for addressing climate change. Carbon capture and sequestration (CCUS) is among the most important clean technology, however, most CCUS projects initiated in the past three decades have failed. This study statistically evaluates the reasons for this unfavourable outcome by estimating a hazard model for 263 CCUS projects undertaken between 1995 and 2018. The results indicate that larger plant sizes increase the risk of CCUS projects being terminated or put on hold; increasing capacity by 1 Mt CO2/y increases the risk of failure by nearly 50%. We also examined the impact of technology push and market pull policies and found that existing support mechanisms have not been sufficient in mitigating the risks associated with project upscaling. CCUS deployment at the gigaton scale depends on substantially reducing project risk while increasing expectations of financial returns. Gradual upscaling, increased policy support, particularly for demonstrations of the viability of CCUS, while also building a market through carbon pricing would help remedy the current imbalance between risk and return. Increasing the expected payoffs for CCUS so that hundreds of real projects are brought on-line will require the co-evolution of technology innovation, institutions, investment, and deployment strategy for CCUS technology.

Suggested Citation

  • Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:enepol:v:158:y:2021:i:c:s030142152100416x
    DOI: 10.1016/j.enpol.2021.112546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152100416X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Minsoo & Han, Xuehui & Quising, Pilipinas & Villaruel, Mai Lin, 2018. "Hazard Analysis on Public–Private Partnership Projects in Developing Asia," ADB Economics Working Paper Series 548, Asian Development Bank.
    2. Joeri Rogelj & David L. McCollum & Andy Reisinger & Malte Meinshausen & Keywan Riahi, 2013. "Probabilistic cost estimates for climate change mitigation," Nature, Nature, vol. 493(7430), pages 79-83, January.
    3. Lawrence H. Goulder & Andrew R. Schein, 2013. "Carbon Taxes Versus Cap And Trade: A Critical Review," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-28.
    4. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    5. Williams, Martin J., 2017. "The Political Economy of Unfinished Development Projects: Corruption, Clientelism, or Collective Choice?," American Political Science Review, Cambridge University Press, vol. 111(4), pages 705-723, November.
    6. Nemet, Gregory F. & Zipperer, Vera & Kraus, Martina, 2018. "The valley of death, the technology pork barrel, and public support for large demonstration projects," Energy Policy, Elsevier, vol. 119(C), pages 154-167.
    7. Åhman, Max & Skjærseth, Jon Birger & Eikeland, Per Ove, 2018. "Demonstrating climate mitigation technologies: An early assessment of the NER 300 programme," Energy Policy, Elsevier, vol. 117(C), pages 100-107.
    8. Popp, David, 2019. "Environmental Policy and Innovation: A Decade of Research," International Review of Environmental and Resource Economics, now publishers, vol. 13(3-4), pages 265-337, September.
    9. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    10. Vivian Scott & Stuart Gilfillan & Nils Markusson & Hannah Chalmers & R. Stuart Haszeldine, 2013. "Last chance for carbon capture and storage," Nature Climate Change, Nature, vol. 3(2), pages 105-111, February.
    11. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    12. Gottlieb, Jessica & Kosec, Katrina, 2019. "The Countervailing Effects of Competition on Public Goods Provision: When Bargaining Inefficiencies Lead to Bad Outcomes," American Political Science Review, Cambridge University Press, vol. 113(1), pages 88-107, February.
    13. David M. Reiner, 2016. "Learning through a portfolio of carbon capture and storage demonstration projects," Nature Energy, Nature, vol. 1(1), pages 1-7, January.
    14. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    15. David G. Victor & Keigo Akimoto & Yoichi Kaya & Mitsutsune Yamaguchi & Danny Cullenward & Cameron Hepburn, 2017. "Prove Paris was more than paper promises," Nature, Nature, vol. 548(7665), pages 25-27, August.
    16. Laura Diaz Anadon & Kelly Sims Gallagher & John P. Holdren, 2017. "Rescue US energy innovation," Nature Energy, Nature, vol. 2(10), pages 760-763, October.
    17. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    18. Glen P. Peters & Robbie M. Andrew & Josep G. Canadell & Sabine Fuss & Robert B. Jackson & Jan Ivar Korsbakken & Corinne Le Quéré & Nebojsa Nakicenovic, 2017. "Key indicators to track current progress and future ambition of the Paris Agreement," Nature Climate Change, Nature, vol. 7(2), pages 118-122, February.
    19. Minsoo Lee & Xuehui Han & Pilipinas F. Quising & Mai Lin Villaruel, 2018. "Hazard Analysis on Public–Private Partnership Projects in Developing Asia," Working Papers id:12878, eSocialSciences.
    20. Ha Hoang & Frank T. Rothaermel, 2010. "Leveraging internal and external experience: exploration, exploitation, and R&D project performance," Strategic Management Journal, Wiley Blackwell, vol. 31(7), pages 734-758, July.
    21. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.
    22. Michaël Aklin & Johannes Urpelainen, 2013. "Political Competition, Path Dependence, and the Strategy of Sustainable Energy Transitions," American Journal of Political Science, John Wiley & Sons, vol. 57(3), pages 643-658, July.
    23. Herzog, Howard J., 2011. "Scaling up carbon dioxide capture and storage: From megatons to gigatons," Energy Economics, Elsevier, vol. 33(4), pages 597-604, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrien Nicolle & Diego Cedreros & Olivier Massol & Emma Jagu Schippers, 2023. "Modeling CO2 Pipeline Systems : An Analytical Lens for CCS Regulation," Working Papers hal-04087681, HAL.
    2. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    3. Song, Xiaohua & Ge, Zeqi & Zhang, Wen & Wang, Zidong & Huang, Yamin & Liu, Hong, 2023. "Study on multi-subject behavior game of CCUS cooperative alliance," Energy, Elsevier, vol. 262(PB).
    4. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Vladimir M. Matyushok & Anastasiia V. Sinelnikova & Sergey B. Matyushok & Diana Pamela Chavarry Galvez, 2024. "Carbon Capture and Storage in Hydrogen Production: World Experience and Growth of Export Opportunities of the Russian Hydrogen Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 507-516, January.
    8. Emanuele Campiglio & Alessandro Spiganti & Anthony Wiskich, 2023. "Clean innovation and heterogeneous financing costs," Working Papers 2023: 07, Department of Economics, University of Venice "Ca' Foscari".
    9. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    10. Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.
    11. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
    12. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    13. Jonathan Paul Marshall, 2022. "A Social Exploration of the West Australian Gorgon Gas, Carbon Capture and Storage Project," Clean Technol., MDPI, vol. 4(1), pages 1-24, February.
    14. Ajay Gambhir & Shivika Mittal & Robin D. Lamboll & Neil Grant & Dan Bernie & Laila Gohar & Adam Hawkes & Alexandre Köberle & Joeri Rogelj & Jason A. Lowe, 2023. "Adjusting 1.5 degree C climate change mitigation pathways in light of adverse new information," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
    16. Xiao, Ting & Chen, Ting & Ma, Zhiwei & Tian, Hailong & Meguerdijian, Saro & Chen, Bailian & Pawar, Rajesh & Huang, Lianjie & Xu, Tianfu & Cather, Martha & McPherson, Brian, 2024. "A review of risk and uncertainty assessment for geologic carbon storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Fan, Wei & Ju, Liwei & Tan, Zhongfu & Li, Xiangguang & Zhang, Amin & Li, Xudong & Wang, Yueping, 2023. "Two-stage distributionally robust optimization model of integrated energy system group considering energy sharing and carbon transfer," Applied Energy, Elsevier, vol. 331(C).
    18. Jingjing Xie & Yujiao Xian & Guowei Jia, 2023. "An investigation into the public acceptance in China of carbon capture and storage (CCS) technology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    19. Yanbin Li & Yanting Sun & Yulin Kang & Feng Zhang & Junjie Zhang, 2023. "An Optimal Site Selection Framework for Near-Zero Carbon Emission Power Plants Based on Multiple Stakeholders," Energies, MDPI, vol. 16(2), pages 1-26, January.
    20. Nicolle, Adrien & Massol, Olivier, 2023. "Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty," Energy Policy, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teixidó, Jordi & Verde, Stefano F. & Nicolli, Francesco, 2019. "The impact of the EU Emissions Trading System on low-carbon technological change: The empirical evidence," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    2. Gao, Xue & Rai, Varun & Nemet, Gregory F., 2022. "The roles of learning mechanisms in services: Evidence from US residential solar installations," Energy Policy, Elsevier, vol. 167(C).
    3. Silvia Dalla Fontana & Ramana Nanda, 2023. "Innovating to Net Zero: Can Venture Capital and Start-Ups Play a Meaningful Role?," Entrepreneurship and Innovation Policy and the Economy, University of Chicago Press, vol. 2(1), pages 79-105.
    4. Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2022. "Policy instruments and self-reported impacts of the adoption of energy saving technologies in the DACH region," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 369-404, May.
    5. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    7. David M. Newbery & David M. Reiner & Robert A. Ritz, 2018. "When is a carbon price floor desirable?," Working Papers EPRG 1816, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2022. "On the quality of emission reductions: observed effects of carbon pricing on investments, innovation, and operational shifts. A response to van den Bergh and Savin (2021)," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 733-758, November.
    9. Krieger, Bastian & Zipperer, Vera, 2022. "Does green public procurement trigger environmental innovations?," Research Policy, Elsevier, vol. 51(6).
    10. David Popp & Jacquelyn Pless & Ivan Haščič & Nick Johnstone, 2020. "Innovation and Entrepreneurship in the Energy Sector," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 175-248, National Bureau of Economic Research, Inc.
    11. Mohamed Bahlali, 2023. "Energy storage and the direction of technical change," Economics Bulletin, AccessEcon, vol. 43(1), pages 318-327.
    12. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    13. Dahlström, Petter & Lööf, Hans & Sjöholm, Fredrik & Stephan, Andreas, 2023. "The EU’s competitive advantage in the "clean-energy arms race"," Working Paper Series in Economics and Institutions of Innovation 495, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    14. Stern, Nicholas & Sivropoulos-Valero, Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," LSE Research Online Documents on Economics 114385, London School of Economics and Political Science, LSE Library.
    15. Denisa Szabo & Mihai Dragomir & Mihail Țîțu & Diana Dragomir & Sorin Popescu & Silvia Tofană, 2023. "Sustainable Low-Carbon Production: From Strategy to Reality," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    16. Jingbo Cui & Zhenxuan Wang & Haishan Yu, 2022. "Can International Climate Cooperation Induce Knowledge Spillover to Developing Countries? Evidence from CDM," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(4), pages 923-951, August.
    17. Antoine Dechezlepretre & Sam Fankhauser & Matthieu Glachant & Jan Stoever & Simon Touboul, 2020. "Invention and Global Diffusion of Technologies for Climate Change Adaptation," World Bank Publications - Reports 33883, The World Bank Group.
    18. Nicholas Stern & Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," CEP Discussion Papers dp1773, Centre for Economic Performance, LSE.
    19. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    20. Simon Touboul & Matthieu Glachant & Antoine Dechezleprêtre & Sam Fankhauser & Jana Stoever, 2023. "Invention and Global Diffusion of Technologies for Climate Change Adaptation: A Patent Analysis," Review of Environmental Economics and Policy, University of Chicago Press, vol. 17(2), pages 316-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:158:y:2021:i:c:s030142152100416x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.