IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/119141.html
   My bibliography  Save this paper

Beyond the sample: extreme quantile and probability estimation

Author

Listed:
  • Danielsson, Jon
  • Vries, Casper

Abstract

Economic problems such as large claims analysis in insurance and value-at-risk in fi- nance, require assessment of the probability P of extreme realizations Q. This paper provides a semi-parametric method for estimation of extreme (P, Q) combinations for data with heavy tails. We solve the long standing problem of estimating the sample threshold of where the tail of the distribution starts. This is accomplished by the combination of a control variate type device and a subsample bootstrap technique. The sub- sample bootstrap attains convergence in probability, whereas the full sample bootstrap would only provide convergence in distribution. This permits a complete and comprehensive treatment of extreme (P, Q) estimation.

Suggested Citation

  • Danielsson, Jon & Vries, Casper, 1998. "Beyond the sample: extreme quantile and probability estimation," LSE Research Online Documents on Economics 119141, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:119141
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/119141/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    2. Hendry, David F., 1984. "Monte carlo experimentation in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 16, pages 937-976, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    2. Richard H. Clarida & Mark P. Taylor, 2003. "Nonlinear Permanent - Temporary Decompositions in Macroeconomics and Finance," Economic Journal, Royal Economic Society, vol. 113(486), pages 125-139, March.
    3. Geluk, J.L. & De Vries, C.G., 2006. "Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 39-56, February.
    4. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 607-646, June.
    5. de Lima, Pedro J. F., 1997. "On the robustness of nonlinearity tests to moment condition failure," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 251-280.
    6. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    7. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    9. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    10. Pais, Amelia & Stork, Philip A., 2011. "Contagion risk in the Australian banking and property sectors," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 681-697, March.
    11. Zacharias Psaradakis & Marián Vávra, 2019. "Portmanteau tests for linearity of stationary time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
    12. Maarten R C van Oordt & Chen Zhou, 2019. "Estimating Systematic Risk under Extremely Adverse Market Conditions," Journal of Financial Econometrics, Oxford University Press, vol. 17(3), pages 432-461.
    13. Cumperayot, Phornchanok & Kouwenberg, Roy, 2013. "Early warning systems for currency crises: A multivariate extreme value approach," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 151-171.
    14. Kyritsis, Evangelos & Serletis, Apostolos, 2018. "The zero lower bound and market spillovers: Evidence from the G7 and Norway," Research in International Business and Finance, Elsevier, vol. 44(C), pages 100-123.
    15. Steel, Mark F. J., 1991. "A Bayesian analysis of simultaneous equation models by combining recursive analytical and numerical approaches," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 83-117.
    16. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    17. Campos, Julia & Ericsson, Neil R. & Hendry, David F., 1996. "Cointegration tests in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 70(1), pages 187-220, January.
    18. VAN DIJK, Herman K., 1987. "Some advances in Bayesian estimations methods using Monte Carlo Integration," LIDAM Reprints CORE 783, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Mauro Costantini & Claudio Lupi, 2013. "A Simple Panel-CADF Test for Unit Roots," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 276-296, April.
    20. Danielsson, Jon & Jorgensen, Bjorn N. & Sarma, Mandira & de Vries, Casper G., 2006. "Comparing downside risk measures for heavy tailed distributions," Economics Letters, Elsevier, vol. 92(2), pages 202-208, August.

    More about this item

    Keywords

    extreme value theory; tail estimation; risk analysis;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:119141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.