IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/5610.html
   My bibliography  Save this paper

Violation duration as a better way of VaR model evaluation : evidence from Turkish market portfolio

Author

Listed:
  • Kilic, Ekrem

Abstract

Financial crisis those we have been experienced during last two decades encouraged the efforts of both academicians and the market participants to develop clear representations of the risk exposure of a �nancial institute. As a useful tool for measuring market risk of a portfolio, Value-at-Risk has emerged as the standard. However, there are several alternative Value-at-Risk implementations which may pro- duce signi�cantly di¤erent Value-at-Risk forecasts. Thus, evaluation of Value-at-Risk forecasts is as crucial as VaR itself. In this paper I will use the methodology which has described by Christoffersen and Pelletier[6] and I extended the methodology to create duration based analogous of unconditional coverage, conditional coverage and inde- pendence tests. I evaluated 14 Value-at-Risk implementation by using a Turkish Market portfolio which contain foreing currency, stock and bonds.

Suggested Citation

  • Kilic, Ekrem, 2006. "Violation duration as a better way of VaR model evaluation : evidence from Turkish market portfolio," MPRA Paper 5610, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:5610
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/5610/1/MPRA_paper_5610.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ekrem Kilic, 2005. "Forecasting Volatility of Turkish Markets: A Comparison of Thin and Thick Models," Econometrics 0510007, University Library of Munich, Germany.
    2. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, November.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. Jón Daníelsson & Casper G. de Vries, 1998. "Beyond the Sample: Extreme Quantile and Probability Estimation," Tinbergen Institute Discussion Papers 98-016/2, Tinbergen Institute.
    5. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    6. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    7. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    8. Peter Christoffersen & Jinyong Hahn & Atsushi Inoue, 1999. "Testing, Comparing, and Combining Value at Risk Measures," Center for Financial Institutions Working Papers 99-44, Wharton School Center for Financial Institutions, University of Pennsylvania.
    9. Susan Thomas & Mandira Sarma & Ajay Shah, 2003. "Selection of Value-at-Risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 337-358.
    10. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    2. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    3. Abdul Hakim, 2009. "Forcasting portofolio value-at-risk for international stocks, bonds, and foreign exchange emerging market evidence," Economic Journal of Emerging Markets, Universitas Islam Indonesia, vol. 1(1), pages 13-26, April.
    4. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    5. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    6. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    7. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    8. Baum, Christopher F. & Zerilli, Paola & Chen, Liyuan, 2021. "Stochastic volatility, jumps and leverage in energy and stock markets: Evidence from high frequency data," Energy Economics, Elsevier, vol. 93(C).
    9. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    10. Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.
    11. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
    12. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    13. da Veiga, Bernardo & Chan, Felix & McAleer, Michael, 2008. "Evaluating the impact of market reforms on Value-at-Risk forecasts of Chinese A and B shares," Pacific-Basin Finance Journal, Elsevier, vol. 16(4), pages 453-475, September.
    14. Benjamin Beckers & Helmut Herwartz & Moritz Seidel, 2017. "Risk forecasting in (T)GARCH models with uncorrelated dependent innovations," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 121-137, January.
    15. Abad, Pilar & Benito, Sonia, 2013. "A detailed comparison of value at risk estimates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 258-276.
    16. Arian, Hamid & Moghimi, Mehrdad & Tabatabaei, Ehsan & Zamani, Shiva, 2022. "Encoded Value-at-Risk: A machine learning approach for portfolio risk measurement," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 500-525.
    17. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    18. Brenda Castillo-Brais & Ángel León & Juan Mora, 2022. "Estimating Value-at-Risk and Expected Shortfall: Do Polynomial Expansions Outperform Parametric Densities?," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    19. Barbara Będowska-Sójka, 2018. "Is intraday data useful for forecasting VaR? The evidence from EUR/PLN exchange rate," Risk Management, Palgrave Macmillan, vol. 20(4), pages 326-346, November.
    20. André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013. "Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 400-441, March.

    More about this item

    Keywords

    Value-at-Risk; model evaluation; conditional cover- age; duration based coverage testing;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:5610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.