IDEAS home Printed from https://ideas.repec.org/p/rdg/icmadp/icma-dp2011-08.html
   My bibliography  Save this paper

Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL

Author

Listed:
  • Carol Alexander

    (ICMA Centre, Henley Business School, University of Reading)

  • Emese Lazar

    (ICMA Centre, Henley Business School, University of Reading)

  • Silvia Stanescu

    (Kent Business School, University of Kent)

Abstract

It is widely accepted that some of the most accurate predictions of aggregated asset returns are based on an appropriately specified GARCH process. As the forecast horizon is greater than the frequency of the GARCH model, such predictions either require time-consuming simulations or they can be approximated using a recent development in the GARCH literature, viz. analytic conditional moment formulae for GARCH aggregated returns. We demonstrate that this methodology yields robust and rapid calculations of the Value-at-Risk (VaR) generated by a GARCH process. Our extensive empirical study applies Edgeworth and Cornish-Fisher expansions and Johnson SU distributions, combined with normal and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial assets; it validates the accuracy of the analytic approximations to GARCH aggregated returns and derives GARCH VaR estimates that are shown to be highly accurate over multiple horizons and significance levels.

Suggested Citation

  • Carol Alexander & Emese Lazar & Silvia Stanescu, 2011. "Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL," ICMA Centre Discussion Papers in Finance icma-dp2011-08, Henley Business School, University of Reading.
  • Handle: RePEc:rdg:icmadp:icma-dp2011-08
    as

    Download full text from publisher

    File URL: http://www.icmacentre.ac.uk/files/discussion-papers/DP2011-08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    2. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    3. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    4. Noël Amenc & Lionel Martellini & Mathieu Vaissié, 2003. "Benefits and risks of alternative investment strategies," Journal of Asset Management, Palgrave Macmillan, vol. 4(2), pages 96-118, August.
    5. Robert Engle, 2004. "Risk and Volatility: Econometric Models and Financial Practice," American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
    6. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    7. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
    8. Michael P. Clements & Nick Taylor, 2003. "Evaluating interval forecasts of high-frequency financial data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 445-456.
    9. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    10. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    11. Jón Daníelsson & Casper G. de Vries, 1998. "Beyond the Sample: Extreme Quantile and Probability Estimation," Tinbergen Institute Discussion Papers 98-016/2, Tinbergen Institute.
    12. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    13. Pérignon, Christophe & Smith, Daniel R., 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
    14. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    15. Enrique Sentana, 1995. "Quadratic ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(4), pages 639-661.
    16. Carol Alexander & Emese Lazar & Silvia Stanescu, 2010. "Analytic Moments for GARCH Processes," ICMA Centre Discussion Papers in Finance icma-dp2011-07, Henley Business School, University of Reading, revised Apr 2011.
    17. James W. Taylor & Derek W. Bunn, 1999. "A Quantile Regression Approach to Generating Prediction Intervals," Management Science, INFORMS, vol. 45(2), pages 225-237, February.
    18. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    19. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    20. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 75, European Central Bank.
    21. Engle, Robert F, 1990. "Stock Volatility and the Crash of '87: Discussion," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 103-106.
    22. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    23. repec:dau:papers:123456789/1378 is not listed on IDEAS
    24. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    3. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    4. Alexander, Carol & Lazar, Emese & Stanescu, Silvia, 2013. "Forecasting VaR using analytic higher moments for GARCH processes," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 36-45.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    6. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    7. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    8. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    9. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    12. Buczyński Mateusz & Chlebus Marcin, 2018. "Comparison of Semi-Parametric and Benchmark Value-At-Risk Models in Several Time Periods with Different Volatility Levels," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(2), pages 67-82, June.
    13. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    14. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    16. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    17. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    18. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    19. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
    20. Med Imen Gallali & Raggad Zahraa, 2012. "Evaluation of VaR models' forecasting performance: the case of oil markets," International Journal of Financial Services Management, Inderscience Enterprises Ltd, vol. 5(3), pages 197-215.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2011-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marie Pearson (email available below). General contact details of provider: https://edirc.repec.org/data/bsrdguk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.