IDEAS home Printed from https://ideas.repec.org/p/vic/vicewp/0705.html
   My bibliography  Save this paper

An Application of Extreme Value Theory to U.S. Movie Box Office Returns

Author

Listed:

Abstract

In this paper we use extreme value theory to model the U.S. movie box-office returns, using weekly data for the period January 1982 to September 2006. The Peaks over Threshold method is used to fit the Generalized Pareto Distribution to the tails of the distributions of both positive weekly returns, and negative returns. Tail risk measures such as value-at-risk and expected shortfall are computed using likelihood and profile likelihood methods. These measures can be used as indicators for the film distributors in the preparation of movie prints, or as references for actual or potential investors in the movie industry.

Suggested Citation

  • Guang Bi & David E. Giles, 2007. "An Application of Extreme Value Theory to U.S. Movie Box Office Returns," Econometrics Working Papers 0705, Department of Economics, University of Victoria.
  • Handle: RePEc:vic:vicewp:0705
    Note: ISSN 1485-6441
    as

    Download full text from publisher

    File URL: https://www.uvic.ca/socialsciences/economics/_assets/docs/econometrics/ewp0705.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jon Danielsson & Casper G. de Vries, 1998. "Beyond the Sample: Extreme Quantile and Probability Estimation," FMG Discussion Papers dp298, Financial Markets Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Modelling Extremes
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2012-04-16 23:29:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
    2. Carol Alexander & Emese Lazar & Silvia Stanescu, 2011. "Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL," ICMA Centre Discussion Papers in Finance icma-dp2011-08, Henley Business School, University of Reading.
    3. Francis X. Diebold & Til Schuermann & John D. Stroughair, 2000. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 1(2), pages 30-35, January.
    4. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 75, European Central Bank.
    5. Odening, Martin & Hinrichs, Jan, 2003. "Die Quantifizierung von Marktrisiken in der Tierproduktion mittels Value-at-Risk und Extreme-Value-Theory," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 52(02), pages 1-11.
    6. Tsourti, Zoi & Panaretos, John, 2001. "Extreme Value Index Estimators and Smoothing Alternatives: Review and Simulation Comparison," MPRA Paper 6384, University Library of Munich, Germany.
    7. Marius Galabe Sampid & Haslifah M Hasim & Hongsheng Dai, 2018. "Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-33, June.
    8. Sebastian Schich, 2004. "European stock market dependencies when price changes are unusually large," Applied Financial Economics, Taylor & Francis Journals, vol. 14(3), pages 165-177.
    9. Carmela E. Quintos & Zhenhong Fan & Peter C.B. Phillips, 2000. "Structural Change in Tail Behavior and the Asian Financial Crisis," Cowles Foundation Discussion Papers 1283, Cowles Foundation for Research in Economics, Yale University.
    10. Ho, Lan-Chih & Burridge, Peter & Cadle, John & Theobald, Michael, 2000. "Value-at-risk: Applying the extreme value approach to Asian markets in the recent financial turmoil," Pacific-Basin Finance Journal, Elsevier, vol. 8(2), pages 249-275, May.
    11. Lazar, Emese & Pan, Jingqi & Wang, Shixuan, 2024. "On the estimation of Value-at-Risk and Expected Shortfall at extreme levels," Journal of Commodity Markets, Elsevier, vol. 34(C).
    12. Cotter, John, 2004. "Downside Risk for European Equity Markets," MPRA Paper 3537, University Library of Munich, Germany.
    13. Lucas, André & Straetmans, Stefan & Klaassen, Pieter, 1999. "Tail behavior of credit loss distributions," Serie Research Memoranda 0060, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    14. Tsourti, Zoi & Panaretos, John, 2004. "Extreme-value analysis of teletraffic data," Computational Statistics & Data Analysis, Elsevier, vol. 45(1), pages 85-103, February.
    15. Brito, Margarida & Freitas, Ana Cristina Moreira, 2010. "Consistent estimation of the tail index for dependent data," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1835-1843, December.
    16. Kilic, Ekrem, 2006. "Violation duration as a better way of VaR model evaluation : evidence from Turkish market portfolio," MPRA Paper 5610, University Library of Munich, Germany.
    17. Marcia M. A. Schafgans, 2000. "On Intercept Estimation in the Sample Selection Model," Econometric Society World Congress 2000 Contributed Papers 0730, Econometric Society.
    18. Tsourti, Zoi & Panaretos, John, 2003. "Extreme Value Index Estimators and Smoothing Alternatives: A Critical Review," MPRA Paper 6390, University Library of Munich, Germany.
    19. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    20. Mendes, Beatriz Vaz de Melo & Lopes, Hedibert Freitas, 2004. "Data driven estimates for mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 583-598, October.

    More about this item

    Keywords

    Movie revenue; extreme values; generalized Pareto distribution; value at risk;
    All these keywords.

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • G1 - Financial Economics - - General Financial Markets
    • Z1 - Other Special Topics - - Cultural Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vic:vicewp:0705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kali Moon (email available below). General contact details of provider: https://edirc.repec.org/data/devicca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.