IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v47y2004i3p583-598.html
   My bibliography  Save this article

Data driven estimates for mixtures

Author

Listed:
  • Mendes, Beatriz Vaz de Melo
  • Lopes, Hedibert Freitas

Abstract

No abstract is available for this item.

Suggested Citation

  • Mendes, Beatriz Vaz de Melo & Lopes, Hedibert Freitas, 2004. "Data driven estimates for mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 583-598, October.
  • Handle: RePEc:eee:csdana:v:47:y:2004:i:3:p:583-598
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(03)00305-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jon Danielsson & Casper G. de Vries, 1998. "Beyond the Sample: Extreme Quantile and Probability Estimation," FMG Discussion Papers dp298, Financial Markets Group.
    2. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim & Nurulkamal Masseran, 2023. "Three-Part Composite Pareto Modelling for Income Distribution in Malaysia," Mathematics, MDPI, vol. 11(13), pages 1-15, June.
    2. Daniela Castro‐Camilo & Raphaël Huser & Håvard Rue, 2022. "Practical strategies for generalized extreme value‐based regression models for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    3. MacDonald, A. & Scarrott, C.J. & Lee, D. & Darlow, B. & Reale, M. & Russell, G., 2011. "A flexible extreme value mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2137-2157, June.
    4. Cristiano Villa, 2017. "Bayesian estimation of the threshold of a generalised pareto distribution for heavy-tailed observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 95-118, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Patton, 2002. "(IAM Series No 001) On the Out-Of-Sample Importance of Skewness and Asymetric Dependence for Asset Allocation," FMG Discussion Papers dp431, Financial Markets Group.
    2. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    3. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    4. Erie Febrian & Aldrin Herwany, 2009. "Volatility Forecasting Models and Market Co-Integration: A Study on South-East Asian Markets," Working Papers in Economics and Development Studies (WoPEDS) 200911, Department of Economics, Padjadjaran University, revised Sep 2009.
    5. Onour , Ibrahim A., 2021. "Modeling and assessing systematic risk in stock markets in major oil exporting countries," Economic Consultant, Roman I. Ostapenko, vol. 35(3), pages 18-29.
    6. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    7. Prosper Dovonon, 2013. "Conditionally Heteroskedastic Factor Models With Skewness And Leverage Effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1110-1137, November.
    8. Tobias Adrian & Nellie Liang, 2018. "Monetary Policy, Financial Conditions, and Financial Stability," International Journal of Central Banking, International Journal of Central Banking, vol. 14(1), pages 73-131, January.
    9. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    10. Chung, Y. Peter & Hong, Hyun A. & Kim, S. Thomas, 2019. "What causes the asymmetric correlation in stock returns?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 190-212.
    11. Allen, David E. & Amram, Ron & McAleer, Michael, 2013. "Volatility spillovers from the Chinese stock market to economic neighbours," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 238-257.
    12. Jochen Krause & Marc S. Paolella, 2014. "A Fast, Accurate Method for Value-at-Risk and Expected Shortfall," Econometrics, MDPI, vol. 2(2), pages 1-25, June.
    13. Hutson, Elaine & Kearney, Colm & Lynch, Margaret, 2008. "Volume and skewness in international equity markets," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1255-1268, July.
    14. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    15. Lee, Kuan-Hui & Yang, Cheol-Won, 2022. "The world price of tail risk," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
    16. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    17. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 208-230, Spring.
    18. Alexander Eastman & Brian Lucey, 2008. "Skewness and asymmetry in futures returns and volumes," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 777-800.
    19. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    20. Thomas C. Chiang & Jiandong Li, 2012. "Stock Returns and Risk: Evidence from Quantile," JRFM, MDPI, vol. 5(1), pages 1-39, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:47:y:2004:i:3:p:583-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.