IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt06m3d6nv.html
   My bibliography  Save this paper

CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles

Author

Listed:
  • Engle, Robert F
  • Manganelli, Simone

Abstract

Value at Risk (VaR) has become the standard measure of market risk employed by financial institutions for both internal and regulatory purposes. VaR is defined as the value that a portfolio will lose with a given probability, over a certain time horizon (usually one or ten days). Despite its conceptual simplicity, its measurement is a very challenging statistical problem and none of the methodologies developed so far give satisfactory solutions. Interpreting the VaR as the quantile of future portfolio values conditional on current information, we propose a new approach to quantile estimation which does not require any of the extreme assumptions invoked by existing methodologies (such as normality or i.i.d. returns). The Conditional Autoregressive Value-at-Risk or CAViaR model moves the focus of attention from the distribution of returns directly to the behavior of the quantile. We specify the evolution of the quantile over time using a special type of autoregressive process and use the regression quantile framework introduced by Koenker and Bassett to determine the unknown parameters. Since the objective function is not differentiable, we use a differential evolutionary genetic algorithm for the numerical optimization. Utilizing the criterion that each period the probability of exceeding the VaR must be independent of all the past information, we introduce a new test of model adequacy, the Dynamic Quantile test. Applications to simulated and real data provide empirical support to this methodology and illustrate the ability of these algorithms to adapt to new risk environments.

Suggested Citation

  • Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt06m3d6nv
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/06m3d6nv.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Newey, Whitney K. & Powell, James L., 1990. "Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 6(3), pages 295-317, September.
    2. Granger, C. W. J. & White, Halbert & Kamstra, Mark, 1989. "Interval forecasting : An analysis based upon ARCH-quantile estimators," Journal of Econometrics, Elsevier, vol. 40(1), pages 87-96, January.
    3. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464.
    4. Jón Daníelsson & Casper G. de Vries, 1998. "Beyond the Sample: Extreme Quantile and Probability Estimation," Tinbergen Institute Discussion Papers 98-016/2, Tinbergen Institute.
    5. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    6. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    7. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    8. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    9. Foresi, S. & Paracchi, F., 1992. "The Conditional Distribution of Excess Returns: An Empirical Analysis," Working Papers 92-49, C.V. Starr Center for Applied Economics, New York University.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(1), pages 46-68, March.
    12. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    13. repec:cup:etheor:v:7:y:1991:i:1:p:46-68 is not listed on IDEAS
    14. repec:cup:etheor:v:6:y:1990:i:3:p:295-317 is not listed on IDEAS
    15. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(3), pages 458-467, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    2. Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
    3. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    4. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    5. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2010. "VAR for VaR: measuring systemic risk using multivariate regression quantiles," MPRA Paper 35372, University Library of Munich, Germany.
    6. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    7. Manganelli, Simone & White, Halbert & Kim, Tae-Hwan, 2008. "Modeling autoregressive conditional skewness and kurtosis with multi-quantile CAViaR," Working Paper Series 957, European Central Bank.
    8. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
    9. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    10. Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
    11. Heejung Bang & Anastasios A. Tsiatis, 2002. "Median Regression with Censored Cost Data," Biometrics, The International Biometric Society, vol. 58(3), pages 643-649, September.
    12. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    13. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
    14. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    15. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    16. White, Halbert & Kim, Tae-Hwan, 2002. "Estimation, Inference, and Specification Testing for Possibly Misspecified Quantile Regression," University of California at San Diego, Economics Working Paper Series qt1s38s0dn, Department of Economics, UC San Diego.
    17. Fitzenberger, Bernd, 1994. "A note on estimating censored quantile regressions," Discussion Papers 14, University of Konstanz, Center for International Labor Economics (CILE).
    18. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    19. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    20. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.

    More about this item

    Keywords

    financial disasters; risk management;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt06m3d6nv. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.