IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i23-24p1835-1843.html
   My bibliography  Save this article

Consistent estimation of the tail index for dependent data

Author

Listed:
  • Brito, Margarida
  • Freitas, Ana Cristina Moreira

Abstract

We consider the estimation of the tail-index for dependent random variables. We establish the consistency of the geometric-type estimator (Brito and Freitas, 2003) for stationary sequences satisfying general mixing conditions and derive a simplified condition, specially adapted for applications.

Suggested Citation

  • Brito, Margarida & Freitas, Ana Cristina Moreira, 2010. "Consistent estimation of the tail index for dependent data," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1835-1843, December.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1835-1843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00232-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jon Danielsson & Casper G. de Vries, 1998. "Beyond the Sample: Extreme Quantile and Probability Estimation," FMG Discussion Papers dp298, Financial Markets Group.
    2. Brito, Margarida & Moreira Freitas, Ana Cristina, 2003. "Limiting behaviour of a geometric-type estimator for tail indices," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 211-226, October.
    3. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    4. Schultze J. & Steinebach J., 1996. "On Least Squares Estimates Of An Exponential Tail Coefficient," Statistics & Risk Modeling, De Gruyter, vol. 14(4), pages 353-372, April.
    5. Brito, Margarida & Moreira Freitas, Ana Cristina, 2006. "Weak convergence of a bootstrap geometric-type estimator with applications to risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 571-584, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brito, Margarida & Freitas, Ana Cristina Moreira, 2008. "Edgeworth expansion for an estimator of the adjustment coefficient," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 203-208, October.
    2. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    3. David Anthoff & Richard S. J. Tol, 2022. "Testing the Dismal Theorem," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(5), pages 885-920.
    4. Ilić, Ivana, 2012. "On tail index estimation using a sample with missing observations," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 949-958.
    5. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 75, European Central Bank.
    6. Christian Schluter, 2018. "Top Incomes, Heavy Tails, and Rank-Size Regressions," Econometrics, MDPI, vol. 6(1), pages 1-16, March.
    7. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    8. Brito, Margarida & Moreira Freitas, Ana Cristina, 2006. "Weak convergence of a bootstrap geometric-type estimator with applications to risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 571-584, June.
    9. Tsourti, Zoi & Panaretos, John, 2004. "Extreme-value analysis of teletraffic data," Computational Statistics & Data Analysis, Elsevier, vol. 45(1), pages 85-103, February.
    10. Tsourti, Zoi & Panaretos, John, 2003. "Extreme Value Index Estimators and Smoothing Alternatives: A Critical Review," MPRA Paper 6390, University Library of Munich, Germany.
    11. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    12. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    13. Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
    14. Phornchanok Cumperayot & Casper G. de Vries, 2006. "Large Swings in Currencies driven by Fundamentals," Tinbergen Institute Discussion Papers 06-086/2, Tinbergen Institute.
    15. Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    16. Einmahl, J.H.J. & de Haan, L.F.M. & Krajina, A., 2009. "Estimating Extreme Bivariate Quantile Regions," Other publications TiSEM 007ce0a9-dd94-4301-ad62-1, Tilburg University, School of Economics and Management.
    17. Estate Khmaladze & Wolfgang Weil, 2008. "Local empirical processes near boundaries of convex bodies," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 813-842, December.
    18. Einmahl, John H.J. & de Haan, Laurens & Sinha, Ashoke Kumar, 1997. "Estimating the spectral measure of an extreme value distribution," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 143-171, October.
    19. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    20. Einmahl, J.H.J. & Li, Jun & Liu, Regina, 2015. "Bridging Centrality and Extremity : Refining Empirical Data Depth using Extreme Value Statistics," Discussion Paper 2015-020, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1835-1843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.