IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.14737.html
   My bibliography  Save this paper

Sentiment Analysis on Inflation after Covid-19

Author

Listed:
  • Xinyu Li
  • Zihan Tang

Abstract

We implement traditional machine learning and deep learning methods for global tweets from 2017-2022 to build a high-frequency measure of the public's sentiment index on inflation and analyze its correlation with other online data sources such as google trend and market-oriented inflation index. We use manually labeled trigrams to test the prediction performance of several machine learning models(logistic regression,random forest etc.) and choose Bert model for final demonstration. Later, we sum daily tweets' sentiment scores gained from Bert model to obtain the predicted inflation sentiment index, and we further analyze the regional and pre/post covid patterns of these inflation indexes. Lastly, we take other empirical inflation-related data as references and prove that twitter-based inflation sentiment analysis method has an outstanding capability to predict inflation. The results suggest that Twitter combined with deep learning methods can be a novel and timely method to utilize existing abundant data sources on inflation expectations and provide daily indicators of consumers' perception on inflation.

Suggested Citation

  • Xinyu Li & Zihan Tang, 2022. "Sentiment Analysis on Inflation after Covid-19," Papers 2209.14737, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2209.14737
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.14737
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    2. Angelico, Cristina & Marcucci, Juri & Miccoli, Marcello & Quarta, Filippo, 2022. "Can we measure inflation expectations using Twitter?," Journal of Econometrics, Elsevier, vol. 228(2), pages 259-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vu, Anh Ngoc, 2023. "Demand reduction campaigns for the illegal wildlife trade in authoritarian Vietnam: Ungrounded environmentalism," World Development, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    2. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    3. Borgioli, Stefano & Gallo, Giampiero M. & Ongari, Chiara, 2024. "Financial returns, sentiment and market volatility. A dynamic assessment," Working Paper Series 2999, European Central Bank.
    4. Donato Masciandaro & Davide Romelli & Gaia Rubera, 2021. "Monetary policy and financial markets: evidence from Twitter traffic," BAFFI CAREFIN Working Papers 21160, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    5. Travis Adams & Andrea Ajello & Diego Silva & Francisco Vazquez-Grande, 2023. "More than Words: Twitter Chatter and Financial Market Sentiment," Papers 2305.16164, arXiv.org.
    6. Swapnil Virendra Chalwadi & Preeti Tushar Joshi & Nitin Mohanlal Sharma & Chaitanya Gite & Sangita Salve, 2023. "Gender Differences in Inflation Expectations: Recent Evidence from India," Administrative Sciences, MDPI, vol. 13(2), pages 1-14, February.
    7. Jouchi Nakajima & Hiroaki Yamagata & Tatsushi Okuda & Shinnosuke Katsuki & Takeshi Shinohara, 2021. "Extracting Firms' Short-Term Inflation Expectations from the Economy Watchers Survey Using Text Analysis," Bank of Japan Working Paper Series 21-E-12, Bank of Japan.
    8. Massimiliano Marcellino & Dalibor Stevanovic, 2022. "The demand and supply of information about inflation," Working Papers 22-06, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2022.
    9. Maria Saveria Mavillonio, 2024. "Natural Language Processing Techniques for Long Financial Document," Discussion Papers 2024/317, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    10. Cafferata, Alessia & Cerruti, Gianluca & Mazzone, Giulio, 2023. "Taxation, health system endowment and institutional quality: ‘Social media’ perceptions across Europe," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 224-243.
    11. Aprigliano, Valentina & Emiliozzi, Simone & Guaitoli, Gabriele & Luciani, Andrea & Marcucci, Juri & Monteforte, Libero, 2023. "The power of text-based indicators in forecasting Italian economic activity," International Journal of Forecasting, Elsevier, vol. 39(2), pages 791-808.
    12. Cafferata, Alessia & Cerruti, Gianluca & Mazzone, Giulio, 2022. "Taxation, health system endowment and quality of institutions: a "social" perception across Europe," MPRA Paper 112118, University Library of Munich, Germany.
    13. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.
    14. Tetiana Yukhymenko, 2021. "Role of the Media in the Inflation Expectation Formation Process," IHEID Working Papers 13-2021, Economics Section, The Graduate Institute of International Studies.
    15. Rosalind L. Bennett & Manju Puri & Paul E. Soto, 2024. "Inside the Boardroom: Evidence from the Board Structure and Meeting Minutes of Community Banks," Finance and Economics Discussion Series 2024-085, Board of Governors of the Federal Reserve System (U.S.).
    16. Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.
    17. J. Daniel Aromí & Martín Llada, 2024. "Are professional forecasters inattentive to public discussions? The case of inflation in Argentina," Working Papers 300, Red Nacional de Investigadores en Economía (RedNIE).
    18. Lin Chen & Stephanie Houle, 2023. "Turning Words into Numbers: Measuring News Media Coverage of Shortages," Discussion Papers 2023-8, Bank of Canada.
    19. Etienne Briand & Massimiliano Marcellino & Dalibor Stevanovic, 2024. "Inflation, Attention and Expectations," Working Papers 24-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Dec 2024.
    20. Efstathios Polyzos & Ghulame Rubbaniy & Mieszko Mazur, 2024. "Efficient Market Hypothesis on the blockchain: A social‐media‐based index for cryptocurrency efficiency," The Financial Review, Eastern Finance Association, vol. 59(3), pages 807-829, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.14737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.