IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v228y2022i2p259-277.html
   My bibliography  Save this article

Can we measure inflation expectations using Twitter?

Author

Listed:
  • Angelico, Cristina
  • Marcucci, Juri
  • Miccoli, Marcello
  • Quarta, Filippo

Abstract

Drawing on Italian tweets, we employ textual data and machine learning techniques to build new real-time measures of consumers’ inflation expectations. First, we select keywords to identify tweets related to prices and expectations thereof. Second, we build a set of daily measures of inflation expectations around the selected tweets, combining the Latent Dirichlet Allocation (LDA) with a dictionary-based approach, using manually labeled bi-grams and tri-grams. Finally, we show that Twitter-based indicators are highly correlated with both monthly survey-based and daily market-based inflation expectations. Our new indicators anticipate consumers’ expectations, proving to be a good real-time proxy, and provide additional information beyond market-based expectations, professional forecasts, and realized inflation. The results suggest that Twitter can be a new timely source for eliciting beliefs.

Suggested Citation

  • Angelico, Cristina & Marcucci, Juri & Miccoli, Marcello & Quarta, Filippo, 2022. "Can we measure inflation expectations using Twitter?," Journal of Econometrics, Elsevier, vol. 228(2), pages 259-277.
  • Handle: RePEc:eee:econom:v:228:y:2022:i:2:p:259-277
    DOI: 10.1016/j.jeconom.2021.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622000227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joseph Haubrich & George Pennacchi & Peter Ritchken, 2012. "Inflation Expectations, Real Rates, and Risk Premia: Evidence from Inflation Swaps," The Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1588-1629.
    2. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Casiraghi, Marco & Miccoli, Marcello, 2019. "Inflation risk premia and risk-adjusted expectations of inflation," Economics Letters, Elsevier, vol. 175(C), pages 36-39.
    5. Francesca Modena & Santiago Pereda-Fernández & Giulia Martina Tanzi, 2023. "On the Design of Grant Assignment Rules," Politica economica, Società editrice il Mulino, issue 1, pages 3-40.
    6. Jiao, Peiran & Veiga, André & Walther, Ansgar, 2020. "Social media, news media and the stock market," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 63-90.
    7. Dolan Antenucci & Michael Cafarella & Margaret Levenstein & Christopher Ré & Matthew D. Shapiro, 2014. "Using Social Media to Measure Labor Market Flows," NBER Working Papers 20010, National Bureau of Economic Research, Inc.
    8. Mao, Huina & Counts, Scott & Bollen, Johan, 2015. "Quantifying the effects of online bullishness on international financial markets," Statistics Paper Series 09, European Central Bank.
    9. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 269-298.
    10. Refet S. Gürkaynak & Brian Sack & Jonathan H. Wright, 2010. "The TIPS Yield Curve and Inflation Compensation," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 70-92, January.
    11. Mao, Huina & Counts, Scott & Bollen, Johan, 2015. "Quantifying the effects of online bullishness on international financial markets," Statistics Paper Series 9, European Central Bank.
    12. Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Mitchell & Saeed Zaman, 2023. "The Distributional Predictive Content of Measures of Inflation Expectations," Working Papers 23-31, Federal Reserve Bank of Cleveland.
    2. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    3. Shah, Syed Faisal & Albaity, Mohamed, 2022. "The role of trust, investor sentiment, and uncertainty on bank stock return performance: Evidence from the MENA region," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    4. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    5. Berardi, Andrea & Plazzi, Alberto, 2022. "Dissecting the yield curve: The international evidence," Journal of Banking & Finance, Elsevier, vol. 134(C).
    6. Perico Ortiz, Daniel, 2023. "Inflation news coverage, expectations and risk premium," FAU Discussion Papers in Economics 05/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "News media versus FRED‐MD for macroeconomic forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 63-81, January.
    8. Gaus, Eric & Sinha, Arunima, 2018. "What does the yield curve imply about investor expectations?," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 248-265.
    9. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    10. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    11. Florian Röder & Andreas Walter, 2019. "What Drives Investment Flows Into Social Trading Portfolios?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(2), pages 383-411, July.
    12. Gholampour, Vahid, 2019. "Daily expectations of returns index," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 236-252.
    13. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    14. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    15. Carlson, Kyle, 2015. "Fear itself: The effects of distressing economic news on birth outcomes," Journal of Health Economics, Elsevier, vol. 41(C), pages 117-132.
    16. Cornand, Camille & Hubert, Paul, 2020. "On the external validity of experimental inflation forecasts: A comparison with five categories of field expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    17. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    18. Matteo Accornero & Mirko Moscatelli, 2018. "Listening to the buzz: social media sentiment and retail depositors' trust," Temi di discussione (Economic working papers) 1165, Bank of Italy, Economic Research and International Relations Area.
    19. Pierre L. Siklos, 2016. "Forecast Disagreement and the Inflation Outlook: New International Evidence," IMES Discussion Paper Series 16-E-03, Institute for Monetary and Economic Studies, Bank of Japan.
    20. Binder, Carola Conces, 2016. "Estimation of historical inflation expectations," Explorations in Economic History, Elsevier, vol. 61(C), pages 1-31.

    More about this item

    Keywords

    Inflation expectations; Twitter; Text mining; Big data; Forecasting;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:228:y:2022:i:2:p:259-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.