IDEAS home Printed from https://ideas.repec.org/a/bkr/journl/v84y2025i1p3-25.html
   My bibliography  Save this article

Modelling Trust in the Central Bank Using Sentiment Analysis

Author

Listed:
  • Anastasia Matevosova

    (Lomonosov Moscow State University; Institute of Economics of the Russian Academy of Sciences)

Abstract

This study proposes a unique method that allows to create, using the sentiment analysis of textual data, a convenient tool to measure the dynamics of trust in the central bank. An indicator of public trust in the Bank of Russia in the 2014-2023 period is built based on the methodology proposed. The relationship between trust and inflation expectations is analysed using an autoregressive model of a moving average with generalised autoregressive conditional heteroskedasticity in residuals (ARMA-GARCH) with exogenous variables. It is revealed that, in the short term, positive trust shocks can reduce inflation expectations, increasing the effectiveness of monetary policy, but do not affect the volatility of inflation expectations. The indicator is proposed to be used in the development of decisions on the Bank of Russia's communication and monetary policy.

Suggested Citation

  • Anastasia Matevosova, 2025. "Modelling Trust in the Central Bank Using Sentiment Analysis," Russian Journal of Money and Finance, Bank of Russia, vol. 84(1), pages 3-25, March.
  • Handle: RePEc:bkr:journl:v:84:y:2025:i:1:p:3-25
    as

    Download full text from publisher

    File URL: https://rjmf.econs.online/upload/iblock/b2c/f07t5dq0abqjbamkj1v6rdd735frzy2j/Modelling-Trust-in-the-Central-Bank-Using-Sentiment-Analysis.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    trust; central bank; indicator; sentiment analysis; text sentiment analysis; inflation expectations; monetary policy;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:84:y:2025:i:1:p:3-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.