IDEAS home Printed from https://ideas.repec.org/p/bdi/wptemi/td_1318_21.html
   My bibliography  Save this paper

Can we measure inflation expectations using Twitter?

Author

Listed:
  • Cristina Angelico

    (Bank of Italy)

  • Juri Marcucci

    (Bank of Italy)

  • Marcello Miccoli

    (International Monetary Fund)

  • Filippo Quarta

    (Bank of Italy)

Abstract

Using Italian data from Twitter, we employ textual data and machine learning techniques to build new real-time measures of consumers' inflation expectations. First, we select some relevant keywords to identify tweets related to prices and expectations thereof. Second, we build a set of daily measures of inflation expectations on the selected tweets combining the Latent Dirichlet Allocation (LDA) with a dictionary-based approach, using manually labelled bi-grams and tri-grams. Finally, we show that the Twitter-based indicators are highly correlated with both monthly survey-based and daily market-based inflation expectations. Our new indicators provide additional information beyond the market-based expectations, the professional forecasts, and the realized inflation, and anticipate consumers' expectations proving to be a good real-time proxy. Results suggest that Twitter can be a new timely source to elicit beliefs.

Suggested Citation

  • Cristina Angelico & Juri Marcucci & Marcello Miccoli & Filippo Quarta, 2021. "Can we measure inflation expectations using Twitter?," Temi di discussione (Economic working papers) 1318, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_1318_21
    as

    Download full text from publisher

    File URL: https://www.bancaditalia.it/pubblicazioni/temi-discussione/2021/2021-1318/en_tema_1318.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dolan Antenucci & Michael Cafarella & Margaret Levenstein & Christopher Ré & Matthew D. Shapiro, 2014. "Using Social Media to Measure Labor Market Flows," NBER Working Papers 20010, National Bureau of Economic Research, Inc.
    2. Mao, Huina & Counts, Scott & Bollen, Johan, 2015. "Quantifying the effects of online bullishness on international financial markets," Statistics Paper Series 09, European Central Bank.
    3. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    4. Jiao, Peiran & Veiga, André & Walther, Ansgar, 2020. "Social media, news media and the stock market," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 63-90.
    5. Joseph Haubrich & George Pennacchi & Peter Ritchken, 2012. "Inflation Expectations, Real Rates, and Risk Premia: Evidence from Inflation Swaps," The Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1588-1629.
    6. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 269-298.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Casiraghi, Marco & Miccoli, Marcello, 2019. "Inflation risk premia and risk-adjusted expectations of inflation," Economics Letters, Elsevier, vol. 175(C), pages 36-39.
    9. Francesca Modena & Santiago Pereda-Fernández & Giulia Martina Tanzi, 2023. "On the Design of Grant Assignment Rules," Politica economica, Società editrice il Mulino, issue 1, pages 3-40.
    10. Refet S. Gürkaynak & Brian Sack & Jonathan H. Wright, 2010. "The TIPS Yield Curve and Inflation Compensation," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 70-92, January.
    11. Mao, Huina & Counts, Scott & Bollen, Johan, 2015. "Quantifying the effects of online bullishness on international financial markets," Statistics Paper Series 9, European Central Bank.
    12. Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    2. James Mitchell & Saeed Zaman, 2023. "The Distributional Predictive Content of Measures of Inflation Expectations," Working Papers 23-31, Federal Reserve Bank of Cleveland.
    3. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    4. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "News media versus FRED‐MD for macroeconomic forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 63-81, January.
    5. Berardi, Andrea & Plazzi, Alberto, 2022. "Dissecting the yield curve: The international evidence," Journal of Banking & Finance, Elsevier, vol. 134(C).
    6. Shah, Syed Faisal & Albaity, Mohamed, 2022. "The role of trust, investor sentiment, and uncertainty on bank stock return performance: Evidence from the MENA region," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    7. Gaus, Eric & Sinha, Arunima, 2018. "What does the yield curve imply about investor expectations?," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 248-265.
    8. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    9. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    10. Florian Röder & Andreas Walter, 2019. "What Drives Investment Flows Into Social Trading Portfolios?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(2), pages 383-411, July.
    11. Gholampour, Vahid, 2019. "Daily expectations of returns index," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 236-252.
    12. Perico Ortiz, Daniel, 2023. "Inflation news coverage, expectations and risk premium," FAU Discussion Papers in Economics 05/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    13. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    14. Gabriel Arce‐Alfaro & Boris Blagov, 2023. "Monetary Policy Uncertainty and Inflation Expectations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(1), pages 70-94, February.
    15. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    16. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    17. Baumeister, Christiane, 2021. "Measuring Market Expectations," CEPR Discussion Papers 16520, C.E.P.R. Discussion Papers.
    18. Carlson, Kyle, 2015. "Fear itself: The effects of distressing economic news on birth outcomes," Journal of Health Economics, Elsevier, vol. 41(C), pages 117-132.
    19. Cornand, Camille & Hubert, Paul, 2020. "On the external validity of experimental inflation forecasts: A comparison with five categories of field expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    20. Hung, Kuo-Che & Ma, Tai, 2017. "The effects of expectations-based monetary policy on international stock markets: An application of heterogeneous agent model," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 70-87.

    More about this item

    Keywords

    inflation expectations; Twitter data; text mining; big data; survey-based measures; market-based measures; forecasting;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_1318_21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.