IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.00368.html
   My bibliography  Save this paper

XVA Analysis From the Balance Sheet

Author

Listed:
  • Claudio Albanese
  • Stephane Crepey
  • Rodney Hoskinson
  • Bouazza Saadeddine

Abstract

XVAs denote various counterparty risk related valuation adjustments that are applied to financial derivatives since the 2007--09 crisis. We root a cost-of-capital XVA strategy in a balance sheet perspective which is key in identifying the economic meaning of the XVA terms. Our approach is first detailed in a static setup that is solved explicitly. It is then plugged in the dynamic and trade incremental context of a real derivative banking portfolio. The corresponding cost-of-capital XVA strategy ensures to bank shareholders a submartingale equity process corresponding to a target hurdle rate on their capital at risk, consistently between and throughout deals. Set on a forward/backward SDE formulation, this strategy can be solved efficiently using GPU computing combined with deep learning regression methods in a whole bank balance sheet context. A numerical case study emphasizes the workability and added value of the ensuing pathwise XVA computations.

Suggested Citation

  • Claudio Albanese & Stephane Crepey & Rodney Hoskinson & Bouazza Saadeddine, 2020. "XVA Analysis From the Balance Sheet," Papers 2009.00368, arXiv.org.
  • Handle: RePEc:arx:papers:2009.00368
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.00368
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Stéphane Crépey & Shiqi Song, 2017. "Invariance Times ," Working Papers hal-01455414, HAL.
    3. Andrew Green & Chris Kenyon, 2014. "KVA: Capital Valuation Adjustment," Papers 1405.0515, arXiv.org, revised Oct 2014.
    4. Gottardi, Piero, 1995. "An Analysis of the Conditions for the Validity of Modigliani-Miller Theorem with Incomplete Markets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(2), pages 191-207, March.
    5. Youssef Elouerkhaoui, 2007. "Pricing And Hedging In A Dynamic Credit Model," World Scientific Book Chapters, in: Alexander Lipton & Andrew Rennie (ed.), Credit Correlation Life After Copulas, chapter 6, pages 111-139, World Scientific Publishing Co. Pte. Ltd..
    6. Stéphane Crépey & Wissal Sabbagh & Shiqi Song, 2020. "When Capital Is a Funding Source: The Anticipated Backward Stochastic Differential Equations of X-Value Adjustments," Post-Print hal-03910119, HAL.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Stéphane Crépey & Shiqi Song, 2016. "Counterparty risk and funding: immersion and beyond," Finance and Stochastics, Springer, vol. 20(4), pages 901-930, October.
    9. Leif Andersen & Darrell Duffie & Yang Song, 2019. "Funding Value Adjustments," Journal of Finance, American Finance Association, vol. 74(1), pages 145-192, February.
    10. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    11. Duffie, Darrell & Huang, Ming, 1996. "Swap Rates and Credit Quality," Journal of Finance, American Finance Association, vol. 51(3), pages 921-949, July.
    12. Damiano Brigo & Andrea Pallavicini, 2014. "Nonlinear consistent valuation of CCP cleared or CSA bilateral trades with initial margins under credit, funding and wrong-way risks," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 1-60.
    13. P. Collin-Dufresne & R. Goldstein & J. Hugonnier, 2004. "A General Formula for Valuing Defaultable Securities," Econometrica, Econometric Society, vol. 72(5), pages 1377-1407, September.
    14. Youssef Elouerkhaoui, 2007. "Pricing And Hedging In A Dynamic Credit Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 703-731.
    15. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    16. Myers, Stewart C., 1977. "Determinants of corporate borrowing," Journal of Financial Economics, Elsevier, vol. 5(2), pages 147-175, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    2. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    3. D Barrera & S Cr'epey & E Gobet & Hoang-Dung Nguyen & B Saadeddine, 2022. "Statistical Learning of Value-at-Risk and Expected Shortfall," Papers 2209.06476, arXiv.org, revised Sep 2024.
    4. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    5. Joel P. Villarino & 'Alvaro Leitao, 2024. "On Deep Learning for computing the Dynamic Initial Margin and Margin Value Adjustment," Papers 2407.16435, arXiv.org.
    6. Lokman A. Abbas‐Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA regressions with oversimulated defaults," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 274-307, April.
    7. Claudio Albanese & Stéphane Crépey & Stefano Iabichino, 2023. "Quantitative reverse stress testing, bottom up," Quantitative Finance, Taylor & Francis Journals, vol. 23(5), pages 863-875, May.
    8. Stéphane Crépey, 2022. "Positive XVAs," Post-Print hal-03910135, HAL.
    9. Dorinel Bastide & Stéphane Crépey & Samuel Drapeau & Mekonnen Tadese, 2022. "Derivatives Risks as Costs in a One-Period Network Model," Working Papers hal-03554577, HAL.
    10. Simonella, Roberta & Vázquez, Carlos, 2023. "XVA in a multi-currency setting with stochastic foreign exchange rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 59-79.
    11. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    12. D Barrera & S Crépey & E Gobet & Hoang-Dung Nguyen & B Saadeddine, 2024. "Statistical Learning of Value-at-Risk and Expected Shortfall," Working Papers hal-03775901, HAL.
    13. You-Shyang Chen & Chien-Ku Lin & Chih-Min Lo & Su-Fen Chen & Qi-Jun Liao, 2021. "Comparable Studies of Financial Bankruptcy Prediction Using Advanced Hybrid Intelligent Classification Models to Provide Early Warning in the Electronics Industry," Mathematics, MDPI, vol. 9(20), pages 1-26, October.
    14. Lokman Abbas-Turki & St'ephane Cr'epey & Bouazza Saadeddine, 2022. "Pathwise CVA Regressions With Oversimulated Defaults," Papers 2211.17005, arXiv.org.
    15. Cyril B'en'ezet & St'ephane Cr'epey, 2022. "Handling model risk with XVAs," Papers 2205.11834, arXiv.org, revised Aug 2024.
    16. Dorinel Bastide & St'ephane Cr'epey, 2024. "Provisions and Economic Capital for Credit Losses," Papers 2401.07728, arXiv.org, revised Jan 2024.
    17. Dorinel Bastide & St'ephane Cr'epey & Samuel Drapeau & Mekonnen Tadese, 2022. "Derivatives Risks as Costs in a One-Period Network Model," Papers 2202.03248, arXiv.org, revised Feb 2022.
    18. Lokman A Abbas-Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA Regressions With Oversimulated Defaults," Post-Print hal-03910149, HAL.
    19. Lokman Abbas-Turki & St'ephane Cr'epey & Botao Li & Bouazza Saadeddine, 2024. "An Explicit Scheme for Pathwise XVA Computations," Papers 2401.13314, arXiv.org.
    20. Chaofan Sun & Ken Seng Tan & Wei Wei, 2022. "Credit Valuation Adjustment with Replacement Closeout: Theory and Algorithms," Papers 2201.09105, arXiv.org, revised Jan 2022.
    21. St'ephane Cr'epey & Botao Li & Hoang Nguyen & Bouazza Saadeddine, 2024. "CVA Sensitivities, Hedging and Risk," Papers 2407.18583, arXiv.org.
    22. Narayan Ganesan & Bernhard Hientzsch, 2021. "Estimating Future VaR from Value Samples and Applications to Future Initial Margin," Papers 2104.11768, arXiv.org.
    23. Dorinel Bastide & Stéphane Crépey & Samuel Drapeau & Mekonnen Tadese, 2022. "Derivatives Risks as Costs in a One-Period Network Model," Post-Print hal-03910144, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    2. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    3. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    4. David Lee, 2018. "Pricing Financial Derivatives Subject to Counterparty Risk and Credit Value Adjustment," Working Papers hal-01758922, HAL.
    5. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    6. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    7. Xiao, Tim, 2018. "The Valuation of Financial Derivatives Subject to Counterparty Risk and Credit Value Adjustment," FrenXiv ds7zj, Center for Open Science.
    8. Albanese Claudio & Armenti Yannick & Crépey Stéphane, 2020. "XVA metrics for CCP optimization," Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 25-53, January.
    9. Stéphane Crépey, 2022. "Positive XVAs," Post-Print hal-03910135, HAL.
    10. Lambrecht, Bart M., 2017. "Real options in finance," Journal of Banking & Finance, Elsevier, vol. 81(C), pages 166-171.
    11. Brigo, Damiano & Francischello, Marco & Pallavicini, Andrea, 2019. "Nonlinear valuation under credit, funding, and margins: Existence, uniqueness, invariance, and disentanglement," European Journal of Operational Research, Elsevier, vol. 274(2), pages 788-805.
    12. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, April.
    13. Wujiang Lou, 2015. "Liability-side Pricing of Swaps and Coherent CVA and FVA by Regression/Simulation," Papers 1512.07340, arXiv.org.
    14. Stéphane Crépey & Matthew F Dixon, 2020. "Gaussian process regression for derivative portfolio modeling and application to credit valuation adjustment computations," Post-Print hal-03910109, HAL.
    15. Claudio Albanese & Marc Chataigner & Stéphane Crépey, 2020. "Wealth Transfers, Indifference Pricing, and XVA Compression Schemes," Post-Print hal-03910047, HAL.
    16. Gabriel J Power & Charli D. Tandja M. & Josée Bastien & Philippe Grégoire, 2015. "Measuring infrastructure investment option value," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 49-72, January.
    17. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    18. Rong Fan & Joseph Haubrich & Peter Ritchken & James Thomson, 2003. "Getting the Most Out of a Mandatory Subordinated Debt Requirement," Journal of Financial Services Research, Springer;Western Finance Association, vol. 24(2), pages 149-179, October.
    19. Andrew Lesniewski & Anja Richter, 2016. "Managing counterparty credit risk via BSDEs," Papers 1608.03237, arXiv.org, revised Aug 2016.
    20. Carmen Schiel & Simon Glöser-Chahoud & Frank Schultmann, 2019. "A real option application for emission control measures," Journal of Business Economics, Springer, vol. 89(3), pages 291-325, April.

    More about this item

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.00368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.