IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.13314.html
   My bibliography  Save this paper

An Explicit Scheme for Pathwise XVA Computations

Author

Listed:
  • Lokman Abbas-Turki

    (LPSM)

  • St'ephane Cr'epey

    (LPSM)

  • Botao Li

    (LPSM)

  • Bouazza Saadeddine

    (LPSM, LaMME)

Abstract

Motivated by the equations of cross valuation adjustments (XVAs) in the realistic case where capital is deemed fungible as a source of funding for variation margin, we introduce a simulation/regression scheme for a class of anticipated BSDEs, where the coefficient entails a conditional expected shortfall of the martingale part of the solution. The scheme is explicit in time and uses neural network least-squares and quantile regressions for the embedded conditional expectations and expected shortfall computations. An a posteriori Monte Carlo validation procedure allows assessing the regression error of the scheme at each time step. The superiority of this scheme with respect to Picard iterations is illustrated in a high-dimensional and hybrid market/default risks XVA use-case.

Suggested Citation

  • Lokman Abbas-Turki & St'ephane Cr'epey & Botao Li & Bouazza Saadeddine, 2024. "An Explicit Scheme for Pathwise XVA Computations," Papers 2401.13314, arXiv.org.
  • Handle: RePEc:arx:papers:2401.13314
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.13314
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stéphane Crépey & Wissal Sabbagh & Shiqi Song, 2020. "When Capital Is a Funding Source: The Anticipated Backward Stochastic Differential Equations of X-Value Adjustments," Post-Print hal-03910119, HAL.
    2. Crépey, Stéphane & Song, Shiqi, 2015. "BSDEs of counterparty risk," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3023-3052.
    3. Lokman A. Abbas‐Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA regressions with oversimulated defaults," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 274-307, April.
    4. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    5. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    6. Lokman A Abbas-Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA Regressions With Oversimulated Defaults," Post-Print hal-03910149, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. St'ephane Cr'epey & Botao Li & Hoang Nguyen & Bouazza Saadeddine, 2024. "CVA Sensitivities, Hedging and Risk," Papers 2407.18583, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lokman Abbas-Turki & St'ephane Cr'epey & Bouazza Saadeddine, 2022. "Pathwise CVA Regressions With Oversimulated Defaults," Papers 2211.17005, arXiv.org.
    2. Lokman A. Abbas‐Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA regressions with oversimulated defaults," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 274-307, April.
    3. Lokman A Abbas-Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA Regressions With Oversimulated Defaults," Post-Print hal-03910149, HAL.
    4. St'ephane Cr'epey & Botao Li & Hoang Nguyen & Bouazza Saadeddine, 2024. "CVA Sensitivities, Hedging and Risk," Papers 2407.18583, arXiv.org.
    5. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    6. Stéphane Crépey, 2022. "Positive XVAs," Post-Print hal-03910135, HAL.
    7. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    8. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2016. "Arbitrage-Free XVA," Papers 1608.02690, arXiv.org.
    9. Han, Xingyu, 2018. "Pricing and hedging vulnerable option with funding costs and collateral," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 103-115.
    10. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    11. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    12. Claudio Albanese & Stéphane Crépey & Stefano Iabichino, 2023. "Quantitative reverse stress testing, bottom up," Quantitative Finance, Taylor & Francis Journals, vol. 23(5), pages 863-875, May.
    13. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2018. "Robust XVA," Papers 1808.04908, arXiv.org, revised Feb 2020.
    14. Simonella, Roberta & Vázquez, Carlos, 2023. "XVA in a multi-currency setting with stochastic foreign exchange rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 59-79.
    15. Dorinel Bastide & Stéphane Crépey & Samuel Drapeau & Mekonnen Tadese, 2022. "Derivatives Risks as Costs in a One-Period Network Model," Post-Print hal-03910144, HAL.
    16. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2021. "Stability of backward stochastic differential equations: the general case," Papers 2107.11048, arXiv.org, revised Apr 2023.
    17. St'ephane Cr'epey & Shiqi Song, 2017. "Invariance times," Papers 1702.01045, arXiv.org.
    18. Dorinel Bastide & Stéphane Crépey & Samuel Drapeau & Mekonnen Tadese, 2022. "Derivatives Risks as Costs in a One-Period Network Model," Working Papers hal-03554577, HAL.
    19. Grzelak, Lech A., 2022. "Sparse grid method for highly efficient computation of exposures for xVA," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    20. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.13314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.