IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v207y2023icp59-79.html
   My bibliography  Save this article

XVA in a multi-currency setting with stochastic foreign exchange rates

Author

Listed:
  • Simonella, Roberta
  • Vázquez, Carlos

Abstract

In the present article we address the modelling and the numerical computation of the total value adjustment for European options in a multi-currency setting when the foreign exchange rates between the different involved currencies are assumed to be stochastic. Thus, we extend to a more realistic approach a previous work where constant exchange rates have been considered. New models are formulated both in terms of linear and nonlinear PDEs and expectations, the hedging arguments requiring the additional consideration of the exposure to foreign exchange risk. For the nonlinear models, Picard iteration methods are applied to the formulation in terms of expectations and compared with multilevel Picard iteration methods. In this way, we avoid the curse of dimensionality associated to the use of deterministic numerical methods (such as finite differences or finite element methods) for solving high dimensional PDEs. Some examples of option pricing problems illustrate the performance of the proposed models and numerical methods.

Suggested Citation

  • Simonella, Roberta & Vázquez, Carlos, 2023. "XVA in a multi-currency setting with stochastic foreign exchange rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 59-79.
  • Handle: RePEc:eee:matcom:v:207:y:2023:i:c:p:59-79
    DOI: 10.1016/j.matcom.2022.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422005018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," Papers 1710.07030, arXiv.org, revised Mar 2019.
    2. Alexander Lipton & Andrey Gal & Andris Lasis, 2014. "Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1899-1922, November.
    3. Andrew Green & Chris Kenyon, 2014. "MVA: Initial Margin Valuation Adjustment by Replication and Regression," Papers 1405.0508, arXiv.org, revised Jan 2015.
    4. Damiano Brigo & Agostino Capponi, 2008. "Bilateral counterparty risk valuation with stochastic dynamical models and application to Credit Default Swaps," Papers 0812.3705, arXiv.org, revised Nov 2009.
    5. Lech A. Grzelak & Cornelis W. Oosterlee, 2012. "On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 1-35, February.
    6. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    7. Griselda Deelstra & Gr�gory Ray�e, 2013. "Local Volatility Pricing Models for Long-Dated FX Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(4), pages 380-402, September.
    8. Alexander Lipton, 2001. "Mathematical Methods for Foreign Exchange:A Financial Engineer's Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4694, February.
    9. Weinan E & Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse, 2021. "Multilevel Picard iterations for solving smooth semilinear parabolic heat equations," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-31, December.
    10. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    11. Andrew Green & Chris Kenyon, 2014. "KVA: Capital Valuation Adjustment," Papers 1405.0515, arXiv.org, revised Oct 2014.
    12. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    13. Arregui, Iñigo & Simonella, Roberta & Vázquez, Carlos, 2022. "Total value adjustment for European options in a multi‐currency setting," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    14. De Col, Alvise & Gnoatto, Alessandro & Grasselli, Martino, 2013. "Smiles all around: FX joint calibration in a multi-Heston model," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3799-3818.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    2. Alessandro Gnoatto & Martino Grasselli, 2013. "An analytic multi-currency model with stochastic volatility and stochastic interest rates," Papers 1302.7246, arXiv.org, revised Mar 2013.
    3. Riu Naito & Toshihiro Yamada, 2024. "Deep Kusuoka Approximation: High-Order Spatial Approximation for Solving High-Dimensional Kolmogorov Equations and Its Application to Finance," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1443-1461, September.
    4. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    5. Lorenc Kapllani & Long Teng, 2024. "A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2408.05620, arXiv.org.
    6. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    7. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
    8. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CIRJE F-Series CIRJE-F-1133, CIRJE, Faculty of Economics, University of Tokyo.
    9. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    10. Yunfei Peng & Pengyu Wei & Wei Wei, 2024. "Deep Penalty Methods: A Class of Deep Learning Algorithms for Solving High Dimensional Optimal Stopping Problems," Papers 2405.11392, arXiv.org.
    11. Alexander Lipton, 2024. "Hydrodynamics of Markets:Hidden Links Between Physics and Finance," Papers 2403.09761, arXiv.org.
    12. P. Carr & A. Itkin & D. Muravey, 2022. "Semi-analytical pricing of barrier options in the time-dependent Heston model," Papers 2202.06177, arXiv.org.
    13. Alexander Lipton, 2023. "Kelvin Waves, Klein-Kramers and Kolmogorov Equations, Path-Dependent Financial Instruments: Survey and New Results," Papers 2309.04547, arXiv.org.
    14. Yoshifumi Tsuchida, 2023. "Control Variate Method for Deep BSDE Solver Using Weak Approximation," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 273-296, June.
    15. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion with Weak Approximation ," CIRJE F-Series CIRJE-F-1168, CIRJE, Faculty of Economics, University of Tokyo.
    16. Akihiko Takahashi & Toshihiro Yamada, 2021. "Asymptotic Expansion and Deep Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Kolmogorov Partial Differential Equations with Nonlinear Coefficients," CIRJE F-Series CIRJE-F-1167, CIRJE, Faculty of Economics, University of Tokyo.
    17. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    18. Stéphane Crépey, 2022. "Positive XVAs," Post-Print hal-03910135, HAL.
    19. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-467, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Jiawei Huo, 2023. "Finite Difference Solution Ansatz approach in Least-Squares Monte Carlo," Papers 2305.09166, arXiv.org, revised Aug 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:207:y:2023:i:c:p:59-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.