IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03910109.html
   My bibliography  Save this paper

Gaussian process regression for derivative portfolio modeling and application to credit valuation adjustment computations

Author

Listed:
  • Stéphane Crépey

    (UFR Mathématiques et informatique [Sciences] - Université Paris Cité - UPCité - Université Paris Cité, LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité)

  • Matthew F Dixon

    (IIT - Illinois Institute of Technology)

Abstract

Modeling counterparty risk is computationally challenging because it requires the simultaneous evaluation of all trades between each counterparty under both market and credit risk. We present a multi-Gaussian process regression approach, which is well suited for the over-the-counter derivative portfolio valuation involved in credit valuation adjustment (CVA) computation. Our approach avoids nested simulation or simulation and regression of cashflows by learning a Gaussian metamodel for the mark-to-market cube of a derivative portfolio. We model the joint posterior of the derivatives as a Gaussian process over function space, imposing the spatial covariance structure on the risk factors. Monte Carlo simulation is then used to simulate the dynamics of the risk factors. The uncertainty in portfolio valuation arising from the Gaussian process approximation is quantified numerically. Numerical experiments demonstrate the accuracy and convergence properties of our approach for CVA computations, including a counterparty portfolio of interest rate swaps.

Suggested Citation

  • Stéphane Crépey & Matthew F Dixon, 2020. "Gaussian process regression for derivative portfolio modeling and application to credit valuation adjustment computations," Post-Print hal-03910109, HAL.
  • Handle: RePEc:hal:journl:hal-03910109
    Note: View the original document on HAL open archive server: https://hal.science/hal-03910109v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03910109v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    3. Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
    4. Cousin, Areski & Maatouk, Hassan & Rullière, Didier, 2016. "Kriging of financial term-structures," European Journal of Operational Research, Elsevier, vol. 255(2), pages 631-648.
    5. Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
    6. Stéphane Crépey & Shiqi Song, 2016. "Counterparty risk and funding: immersion and beyond," Finance and Stochastics, Springer, vol. 20(4), pages 901-930, October.
    7. Laura Ballotta & Gianluca Fusai, 2015. "Counterparty credit risk in a multivariate structural model with jumps," Finance, Presses universitaires de Grenoble, vol. 36(1), pages 39-74.
    8. Marcelo Rosário da Barrosa & Arthur Valle Salles & Celma de Oliveira Ribeiro, 2016. "Portfolio optimization through Kriging methods," Applied Economics, Taylor & Francis Journals, vol. 48(50), pages 4894-4905, October.
    9. Chris Kenyon & Andrew Green, 2014. "Efficient XVA Management: Pricing, Hedging, and Attribution using Trade-Level Regression and Global Conditioning," Papers 1412.5332, arXiv.org, revised Dec 2014.
    10. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    11. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. St'ephane Cr'epey & Matthew Dixon, 2019. "Gaussian Process Regression for Derivative Portfolio Modeling and Application to CVA Computations," Papers 1901.11081, arXiv.org, revised Oct 2019.
    2. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    3. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    4. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    5. Lokman Abbas-Turki & St'ephane Cr'epey & Bouazza Saadeddine, 2022. "Pathwise CVA Regressions With Oversimulated Defaults," Papers 2211.17005, arXiv.org.
    6. Lokman A. Abbas‐Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA regressions with oversimulated defaults," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 274-307, April.
    7. J. Lars Kirkby & Shi-Jie Deng, 2019. "Swing Option Pricing By Dynamic Programming With B-Spline Density Projection," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-53, December.
    8. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2013. "Valuing modular nuclear power plants in finite time decision horizon," Energy Economics, Elsevier, vol. 36(C), pages 625-636.
    9. Jiawei Huo, 2023. "Finite Difference Solution Ansatz approach in Least-Squares Monte Carlo," Papers 2305.09166, arXiv.org, revised Aug 2024.
    10. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    11. Lokman A Abbas-Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA Regressions With Oversimulated Defaults," Post-Print hal-03910149, HAL.
    12. A. Cassagnes & Y. Chen & H. Ohashi, 2014. "Heterogeneous Computation Of Rainbow Option Prices Using Fourier Cosine Series Expansion Under A Mixed Cpu–Gpu Computation Framework," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(2), pages 91-104, April.
    13. Vikranth Lokeshwar & Vikram Bhardawaj & Shashi Jain, 2019. "Neural network for pricing and universal static hedging of contingent claims," Papers 1911.11362, arXiv.org.
    14. Yingming Ge & Lingfei Li & Gongqiu Zhang, 2022. "A Fourier Transform Method for Solving Backward Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 385-412, March.
    15. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    16. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Variance Reduction Applied to Machine Learning for Pricing Bermudan/American Options in High Dimension," Papers 1903.11275, arXiv.org, revised Dec 2019.
    17. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    18. Lucio Fernandez‐Arjona & Damir Filipović, 2022. "A machine learning approach to portfolio pricing and risk management for high‐dimensional problems," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 982-1019, October.
    19. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
    20. Fei Cong & Cornelis W. Oosterlee, 2017. "Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 433-458, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03910109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.