IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v33y2023i2p274-307.html
   My bibliography  Save this article

Pathwise CVA regressions with oversimulated defaults

Author

Listed:
  • Lokman A. Abbas‐Turki
  • Stéphane Crépey
  • Bouazza Saadeddine

Abstract

We consider the computation by simulation and neural net regression of conditional expectations, or more general elicitable statistics, of functionals of processes (X,Y)$(X,Y)$. Here an exogenous component Y (Markov by itself) is time‐consuming to simulate, while the endogenous component X (jointly Markov with Y) is quick to simulate given Y, but is responsible for most of the variance of the simulated payoff. To address the related variance issue, we introduce a conditionally independent, hierarchical simulation scheme, where several paths of X are simulated for each simulated path of Y. We analyze the statistical convergence of the regression learning scheme based on such block‐dependent data. We derive heuristics on the number of paths of Y and, for each of them, of X, that should be simulated. The resulting algorithm is implemented on a graphics processing unit (GPU) combining Python/CUDA and learning with PyTorch. A CVA case study with a nested Monte Carlo benchmark shows that the hierarchical simulation technique is key to the success of the learning approach.

Suggested Citation

  • Lokman A. Abbas‐Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA regressions with oversimulated defaults," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 274-307, April.
  • Handle: RePEc:bla:mathfi:v:33:y:2023:i:2:p:274-307
    DOI: 10.1111/mafi.12368
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12368
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    3. Crépey, Stéphane & Song, Shiqi, 2015. "BSDEs of counterparty risk," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3023-3052.
    4. Brian Huge & Antoine Savine, 2020. "Differential Machine Learning," Papers 2005.02347, arXiv.org, revised Sep 2020.
    5. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver - A neural network based counterparty credit risk management framework," Working Papers 07/2020, University of Verona, Department of Economics.
    6. René Carmona & Stéphane Crépey, 2010. "Particle Methods For The Estimation Of Credit Portfolio Loss Distributions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 577-602.
    7. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    8. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    9. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. St'ephane Cr'epey & Botao Li & Hoang Nguyen & Bouazza Saadeddine, 2024. "CVA Sensitivities, Hedging and Risk," Papers 2407.18583, arXiv.org.
    2. Lokman Abbas-Turki & St'ephane Cr'epey & Botao Li & Bouazza Saadeddine, 2024. "An Explicit Scheme for Pathwise XVA Computations," Papers 2401.13314, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lokman Abbas-Turki & St'ephane Cr'epey & Bouazza Saadeddine, 2022. "Pathwise CVA Regressions With Oversimulated Defaults," Papers 2211.17005, arXiv.org.
    2. Lokman A Abbas-Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA Regressions With Oversimulated Defaults," Post-Print hal-03910149, HAL.
    3. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    4. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    5. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    6. Nteukam T., Oberlain & Planchet, Frédéric, 2012. "Stochastic evaluation of life insurance contracts: Model point on asset trajectories and measurement of the error related to aggregation," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 624-631.
    7. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    8. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    9. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    10. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    11. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
    12. Sascha Desmettre & Ralf Korn & Javier Alejandro Varela & Norbert Wehn, 2016. "Nested MC-Based Risk Measurement of Complex Portfolios: Acceleration and Energy Efficiency," Risks, MDPI, vol. 4(4), pages 1-35, October.
    13. Kun Zhang & Ben Mingbin Feng & Guangwu Liu & Shiyu Wang, 2022. "Sample Recycling for Nested Simulation with Application in Portfolio Risk Measurement," Papers 2203.15929, arXiv.org.
    14. Patrick Cheridito & John Ery & Mario V. Wüthrich, 2020. "Assessing Asset-Liability Risk with Neural Networks," Risks, MDPI, vol. 8(1), pages 1-17, February.
    15. Ankirchner, Stefan & Schneider, Judith C. & Schweizer, Nikolaus, 2014. "Cross-hedging minimum return guarantees: Basis and liquidity risks," Journal of Economic Dynamics and Control, Elsevier, vol. 41(C), pages 93-109.
    16. Cornelis S. L. de Graaf & Drona Kandhai & Christoph Reisinger, 2016. "Efficient exposure computation by risk factor decomposition," Papers 1608.01197, arXiv.org, revised Feb 2018.
    17. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    18. Francisco G'omez Casanova & 'Alvaro Leitao & Fernando de Lope Contreras & Carlos V'azquez, 2024. "Deep Joint Learning valuation of Bermudan Swaptions," Papers 2404.11257, arXiv.org.
    19. Junyao Chen & Tony Sit & Hoi Ying Wong, 2019. "Simulation-based Value-at-Risk for Nonlinear Portfolios," Papers 1904.09088, arXiv.org.
    20. Lucio Fernandez‐Arjona & Damir Filipović, 2022. "A machine learning approach to portfolio pricing and risk management for high‐dimensional problems," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 982-1019, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:33:y:2023:i:2:p:274-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.