IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.11834.html
   My bibliography  Save this paper

Handling model risk with XVAs

Author

Listed:
  • Cyril B'en'ezet

    (LaMME, ENSIIE)

  • St'ephane Cr'epey

    (LPSM)

Abstract

In this paper we revisit Burnett (2021) \& Burnett and Williams (2021)'s notion of hedging valuation adjustment (HVA), originally intended to deal with dynamic hedging frictions such as transaction costs, in the direction of model risk. The corresponding HVA reconciles a global fair valuation model with the local models used by the different desks of the bank. Model risk and dynamic hedging frictions indeed deserve a reserve, but a risk-adjusted one, so not only an HVA, but also a contribution to the KVA of the bank. The orders of magnitude of the effects involved suggest that local models should not so much be managed via reserves, as excluded altogether.

Suggested Citation

  • Cyril B'en'ezet & St'ephane Cr'epey, 2022. "Handling model risk with XVAs," Papers 2205.11834, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2205.11834
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.11834
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nicole El Karoui & Monique Jeanblanc‐Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126, April.
    2. Lorenzo Silotto & Marco Scaringi & Marco Bianchetti, 2021. "Everything You Always Wanted to Know About XVA Model Risk but Were Afraid to Ask," Papers 2107.10377, arXiv.org.
    3. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    4. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    5. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    6. Yuri Kabanov, 2009. "Markets with Transaction Costs. Mathematical Theory," Post-Print hal-00488168, HAL.
    7. Nils Detering & Natalie Packham, 2016. "Model risk of contingent claims," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1357-1374, September.
    8. Barrieu, Pauline & Scandolo, Giacomo, 2015. "Assessing financial model risk," European Journal of Operational Research, Elsevier, vol. 242(2), pages 546-556.
    9. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cyril Bénézet & Stéphane Crépey & Dounia Essaket, 2023. "Hedging Valuation Adjustment for Callable Claims," Working Papers hal-04057045, HAL.
    2. Cyril B'en'ezet & St'ephane Cr'epey & Dounia Essaket, 2023. "Hedging Valuation Adjustment for Callable Claims," Papers 2304.02479, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.
    2. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    3. Lazar, Emese & Qi, Shuyuan, 2022. "Model risk in the over-the-counter market," European Journal of Operational Research, Elsevier, vol. 298(2), pages 769-784.
    4. Coqueret, Guillaume & Tavin, Bertrand, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 253(3), pages 648-658.
    5. Valeriane Jokhadze & Wolfgang M. Schmidt, 2020. "Measuring Model Risk In Financial Risk Management And Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-37, April.
    6. Mai Jan-Frederik & Schenk Steffen & Scherer Matthias, 2015. "Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 177-195, December.
    7. Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
    8. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    9. Tunaru, Radu & Zheng, Teng, 2017. "Parameter estimation risk in asset pricing and risk management: A Bayesian approach," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 80-93.
    10. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    11. Claußen, Arndt & Rösch, Daniel & Schmelzle, Martin, 2019. "Hedging parameter risk," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 111-121.
    12. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    13. Junichi Imai, 2022. "A Numerical Method for Hedging Bermudan Options under Model Uncertainty," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 893-916, June.
    14. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    15. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    16. Cousin, Areski & Maatouk, Hassan & Rullière, Didier, 2016. "Kriging of financial term-structures," European Journal of Operational Research, Elsevier, vol. 255(2), pages 631-648.
    17. Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
    18. Yu Feng, 2019. "Theory and Application of Model Risk Quantification," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2019, January-A.
    19. Marco Frittelli & Marco Maggis, 2017. "Disentangling Price, Risk and Model Risk: V&R measures," Papers 1703.01329, arXiv.org, revised Jul 2017.
    20. Emese Lazar & Shuyuan Qi & Radu Tunaru, 2020. "Measures of Model Risk in Continuous-time Finance Models," Papers 2010.08113, arXiv.org, revised Oct 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.11834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.