IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.16435.html
   My bibliography  Save this paper

On Deep Learning for computing the Dynamic Initial Margin and Margin Value Adjustment

Author

Listed:
  • Joel P. Villarino
  • 'Alvaro Leitao

Abstract

The present work addresses the challenge of training neural networks for Dynamic Initial Margin (DIM) computation in counterparty credit risk, a task traditionally burdened by the high costs associated with generating training datasets through nested Monte Carlo (MC) simulations. By condensing the initial market state variables into an input vector, determined through an interest rate model and a parsimonious parameterization of the current interest rate term structure, we construct a training dataset where labels are noisy but unbiased DIM samples derived from single MC paths. A multi-output neural network structure is employed to handle DIM as a time-dependent function, facilitating training across a mesh of monitoring times. The methodology offers significant advantages: it reduces the dataset generation cost to a single MC execution and parameterizes the neural network by initial market state variables, obviating the need for repeated training. Experimental results demonstrate the approach's convergence properties and robustness across different interest rate models (Vasicek and Hull-White) and portfolio complexities, validating its general applicability and efficiency in more realistic scenarios.

Suggested Citation

  • Joel P. Villarino & 'Alvaro Leitao, 2024. "On Deep Learning for computing the Dynamic Initial Margin and Margin Value Adjustment," Papers 2407.16435, arXiv.org.
  • Handle: RePEc:arx:papers:2407.16435
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.16435
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    4. Damiano Brigo & Agostino Capponi & Andrea Pallavicini, 2014. "Arbitrage-Free Bilateral Counterparty Risk Valuation Under Collateralization And Application To Credit Default Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 125-146, January.
    5. Asif Lakhany & Amber Zhang, 2021. "Efficient ISDA Initial Margin Calculations Using Least Squares Monte-Carlo," Papers 2110.13296, arXiv.org.
    6. Cornelis W Oosterlee & Lech A Grzelak, 2019. "Mathematical Modeling and Computation in Finance:With Exercises and Python and MATLAB Computer Codes," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number q0236, February.
    7. Shuaiqiang Liu & Anastasia Borovykh & Lech A. Grzelak & Cornelis W. Oosterlee, 2019. "A neural network-based framework for financial model calibration," Papers 1904.10523, arXiv.org.
    8. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    9. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    10. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    11. Andrea Pallavicini & Daniele Perini & Damiano Brigo, 2011. "Funding Valuation Adjustment: a consistent framework including CVA, DVA, collateral,netting rules and re-hypothecation," Papers 1112.1521, arXiv.org, revised Dec 2011.
    12. Patrick Hagan & Graeme West, 2006. "Interpolation Methods for Curve Construction," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(2), pages 89-129.
    13. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    14. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco G'omez Casanova & 'Alvaro Leitao & Fernando de Lope Contreras & Carlos V'azquez, 2024. "Deep Joint Learning valuation of Bermudan Swaptions," Papers 2404.11257, arXiv.org.
    2. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    3. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2015. "Stochastic string models with continuous semimartingales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 229-246.
    4. Griselda Deelstra & Lech A. Grzelak & Felix L. Wolf, 2022. "Accelerated Computations of Sensitivities for xVA," Papers 2211.17026, arXiv.org, revised Jan 2024.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    7. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    8. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    9. He, Jie-Cao & Hsieh, Chang-Chieh & Huang, Zi-Wei & Lin, Shih-Kuei, 2023. "Valuation of callable range accrual linked to CMS Spread under generalized swap market model," International Review of Financial Analysis, Elsevier, vol. 90(C).
    10. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    11. Xiao Lin, 2016. "The Zero-Coupon Rate Model for Derivatives Pricing," Papers 1606.01343, arXiv.org, revised Feb 2022.
    12. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    13. Dariusz Gatarek & Juliusz Jabłecki, 2021. "Between Scylla and Charybdis: The Bermudan Swaptions Pricing Odyssey," Mathematics, MDPI, vol. 9(2), pages 1-32, January.
    14. Jonathan A. Batten & Karren Lee-Hwei Khaw & Martin R. Young, 2014. "Convertible Bond Pricing Models," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 775-803, December.
    15. Arismendi-Zambrano, Juan & Belitsky, Vladimir & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2022. "The implications of dependence, tail dependence, and bounds’ measures for counterparty credit risk pricing," Journal of Financial Stability, Elsevier, vol. 58(C).
    16. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    17. Eickholt, Mathias, 2014. "Behavioral financial engineering in the fixed-income market: The influence of the coupon structure," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe 16, University of Passau, Faculty of Business and Economics.
    18. Gamba, Andrea & Rigon, Riccardo, 2008. "The value of embedded real options: Evidence from consumer automobile lease contracts--A note," Finance Research Letters, Elsevier, vol. 5(4), pages 213-220, December.
    19. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    20. J. C. Arismendi-Zambrano & Vladimir Belitsky & Vinicius Amorim Sobreiro & Herbert Kimura, 2020. "The Implications of Tail Dependency Measures for Counterparty Credit Risk Pricing," Economics Department Working Paper Series n306-20.pdf, Department of Economics, National University of Ireland - Maynooth.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.16435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.