IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01455414.html
   My bibliography  Save this paper

Invariance Times

Author

Listed:
  • Stéphane Crépey

    (LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - INRA - Institut National de la Recherche Agronomique - UEVE - Université d'Évry-Val-d'Essonne - CNRS - Centre National de la Recherche Scientifique)

  • Shiqi Song

    (LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - INRA - Institut National de la Recherche Agronomique - UEVE - Université d'Évry-Val-d'Essonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

On a probability space $(\Omega,\mathcal{A},\mathbb{Q})$ we consider two filtrations $\mathbb{F}\subset \mathbb{G}$ and a $\mathbb{G}$ stopping time $\theta$ such that the $\mathbb{G}$ predictable processes coincide with $\mathbb{F}$ predictable processes on $(0,\theta]$. In this setup it is well-known that, for any $\mathbb{F}$ semimartingale $X$, the process $X^{\theta-}$ ($X$ stopped ``right before $\theta$'') is a $\mathbb{G}$ semimartingale. Given a positive constant $T$, we call $\theta$ an invariance time if there exists a probability measure $\mathbb{P}$ equivalent to $\mathbb{Q}$ on $\mathcal{F}_T$ such that, for any $(\mathbb{F},\mathbb{P})$ local martingale $X$, $X^{\theta-}$ is a $(\mathbb{G},\mathbb{Q})$ local martingale. We characterize invariance times in terms of the $(\mathbb{F},\mathbb{Q})$ Az\'ema supermartingale of $\theta$ and we derive a mild and tractable invariance time sufficiency condition. We discuss invariance times in mathematical finance and BSDE applications.

Suggested Citation

  • Stéphane Crépey & Shiqi Song, 2017. "Invariance Times ," Working Papers hal-01455414, HAL.
  • Handle: RePEc:hal:wpaper:hal-01455414
    Note: View the original document on HAL open archive server: https://hal.science/hal-01455414
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01455414/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1761-1784.
    2. P. Collin-Dufresne & R. Goldstein & J. Hugonnier, 2004. "A General Formula for Valuing Defaultable Securities," Econometrica, Econometric Society, vol. 72(5), pages 1377-1407, September.
    3. Crépey, Stéphane & Song, Shiqi, 2015. "BSDEs of counterparty risk," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3023-3052.
    4. Stéphane Crépey & Shiqi Song, 2016. "Counterparty risk and funding: immersion and beyond," Finance and Stochastics, Springer, vol. 20(4), pages 901-930, October.
    5. Bo, Lijun & Capponi, Agostino, 2015. "Counterparty risk for CDS: Default clustering effects," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 29-42.
    6. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," LSE Research Online Documents on Economics 65150, London School of Economics and Political Science, LSE Library.
    7. Claudio Fontana & Monique Jeanblanc & Shiqi Song, 2014. "On arbitrages arising with honest times," Finance and Stochastics, Springer, vol. 18(3), pages 515-543, July.
    8. Damiano Brigo & Agostino Capponi & Andrea Pallavicini, 2014. "Arbitrage-Free Bilateral Counterparty Risk Valuation Under Collateralization And Application To Credit Default Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 125-146, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. St'ephane Cr'epey & Shiqi Song, 2017. "Invariance properties in the dynamic gaussian copula model ," Papers 1702.03232, arXiv.org.
    2. Stéphane Crépey & Shiqi Song, 2017. "Invariance properties in the dynamic gaussian copula model ," Working Papers hal-01455424, HAL.
    3. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. St'ephane Cr'epey & Shiqi Song, 2017. "Invariance times," Papers 1702.01045, arXiv.org.
    2. Kreher, Dörte, 2017. "Change of measure up to a random time: Details," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1565-1598.
    3. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.
    4. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2018. "No-arbitrage under a class of honest times," Finance and Stochastics, Springer, vol. 22(1), pages 127-159, January.
    5. Constantinos Kardaras & Johannes Ruf, 2020. "Filtration shrinkage, the structure of deflators, and failure of market completeness," Finance and Stochastics, Springer, vol. 24(4), pages 871-901, October.
    6. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    7. Choulli, Tahir & Yansori, Sina, 2022. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 230-264.
    8. Constantinos Kardaras & Johannes Ruf, 2019. "Filtration shrinkage, the structure of deflators, and failure of market completeness," Papers 1912.04652, arXiv.org, revised Aug 2020.
    9. Damiano Brigo & Federico Graceffa & Alexander Kalinin, 2021. "Mild to classical solutions for XVA equations under stochastic volatility," Papers 2112.11808, arXiv.org.
    10. Delia Coculescu & Aditi Dandapani, 2020. "Insiders and their Free Lunches: the Role of Short Positions," Papers 2012.00359, arXiv.org, revised Jan 2022.
    11. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2016. "Arbitrage-Free XVA," Papers 1608.02690, arXiv.org.
    12. Han, Xingyu, 2018. "Pricing and hedging vulnerable option with funding costs and collateral," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 103-115.
    13. Fontana, Claudio, 2018. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1007-1033.
    14. Lin, Feng & Peng, Liang & Xie, Jiehua & Yang, Jingping, 2018. "Stochastic distortion and its transformed copula," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 148-166.
    15. Frédéric Vrins, 2017. "Wrong-Way Risk Cva Models With Analytical Epe Profiles Under Gaussian Exposure Dynamics," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-35, November.
    16. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    17. Albanese Claudio & Armenti Yannick & Crépey Stéphane, 2020. "XVA metrics for CCP optimization," Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 25-53, January.
    18. Jerome Detemple & Marcel Rindisbacher & Scott Robertson, 2020. "Dynamic Noisy Rational Expectations Equilibrium With Insider Information," Econometrica, Econometric Society, vol. 88(6), pages 2697-2737, November.
    19. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2018. "The value of informational arbitrage," Papers 1804.00442, arXiv.org.
    20. Stéphane Crépey & Shiqi Song, 2016. "Counterparty risk and funding: immersion and beyond," Finance and Stochastics, Springer, vol. 20(4), pages 901-930, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01455414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.