Statistical Learning of Value-at-Risk and Expected Shortfall
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Roger Koenker, 2017. "Quantile Regression: 40 Years On," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 155-176, September.
- Acerbi, Carlo & Tasche, Dirk, 2002.
"On the coherence of expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
- Carlo Acerbi & Dirk Tasche, 2001. "On the coherence of Expected Shortfall," Papers cond-mat/0104295, arXiv.org, revised May 2002.
- Yufeng Liu & Yichao Wu, 2011. "Simultaneous multiple non-crossing quantile regression estimation using kernel constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 415-437.
- Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
- Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
- Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021.
"XVA analysis from the balance sheet,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
- Claudio Albanese & Stephane Crepey & Rodney Hoskinson & Bouazza Saadeddine, 2020. "XVA Analysis From the Balance Sheet," Papers 2009.00368, arXiv.org.
- Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA Analysis From the Balance Sheet," Post-Print hal-03910125, HAL.
- Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
- Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- D Barrera & S Crépey & E Gobet & Hoang-Dung Nguyen & B Saadeddine, 2024. "Statistical Learning of Value-at-Risk and Expected Shortfall," Working Papers hal-03775901, HAL.
- Xenxo Vidal-Llana & Carlos Salort Sánchez & Vincenzo Coia & Montserrat Guillen, 2022. ""Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditions"," IREA Working Papers 202215, University of Barcelona, Research Institute of Applied Economics, revised Oct 2022.
- Anne M. Lausier & Shaleen Jain, 2018. "Diversity in global patterns of observed precipitation variability and change on river basin scales," Climatic Change, Springer, vol. 149(2), pages 261-275, July.
- Damian Clarke & Manuel Llorca Jaña & Daniel Pailañir, 2023.
"The use of quantile methods in economic history,"
Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 56(2), pages 115-132, April.
- Clarke, Damian & Llorca-Jaña, Manuel & Pailañir, Daniel, 2021. "The Use of Quantile Methods in Economic History," IZA Discussion Papers 14659, Institute of Labor Economics (IZA).
- Damian Clarke & Manuel Llorca Ja~na & Daniel Paila~nir, 2021. "The Use of Quantile Methods in Economic History," Papers 2108.06055, arXiv.org.
- Paolo Frumento & Nicola Salvati, 2021. "Parametric modeling of quantile regression coefficient functions with count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1237-1258, October.
- Sulkhan Chavleishvili & Simone Manganelli, 2024.
"Forecasting and stress testing with quantile vector autoregression,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
- Chavleishvili, Sulkhan & Manganelli, Simone, 2019. "Forecasting and stress testing with quantile vector autoregression," Working Paper Series 2330, European Central Bank.
- Chen, Xiaohong & Pouzo, Demian & Powell, James L., 2019.
"Penalized sieve GEL for weighted average derivatives of nonparametric quantile IV regressions,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 30-53.
- Xiaohong Chen & Demian Pouzo & James L. Powell, 2019. "Penalized Sieve GEL for Weighted Average Derivatives of Nonparametric Quantile IV Regressions," Papers 1902.10100, arXiv.org.
- Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
- Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2019. "Quantile Diffusions for Risk Analysis," Papers 1912.10866, arXiv.org, revised Sep 2021.
- Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon-Jae Whang, 2022. "Quantile Random-Coefficient Regression with Interactive Fixed Effects: Heterogeneous Group-Level Policy Evaluation," Papers 2208.03632, arXiv.org, revised Nov 2024.
- Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
- Tao Hu & Baosheng Liang, 2021. "A New Class of Estimators Based on a General Relative Loss Function," Mathematics, MDPI, vol. 9(10), pages 1-19, May.
- Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon-Jae Whang, 2022. "Estimation of Heterogeneous Treatment Effects Using Quantile Regression with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 13/22, Monash University, Department of Econometrics and Business Statistics.
- Maximilian Buchholz & Harald Bathelt & John A. Cantwell, 2020. "Income divergence and global connectivity of U.S. urban regions," Journal of International Business Policy, Palgrave Macmillan, vol. 3(3), pages 229-248, September.
- Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
- Fabio Zambuto, 2021.
"Quality checks on granular banking data: an experimental approach based on machine learning,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Micro data for the macro world, volume 53,
Bank for International Settlements.
- Fabio Zambuto & Maria Rosaria Buzzi & Giuseppe Costanzo & Marco Di Lucido & Barbara La Ganga & Pasquale Maddaloni & Fabio Papale & Emiliano Svezia, 2020. "Quality checks on granular banking data: an experimental approach based on machine learning?," Questioni di Economia e Finanza (Occasional Papers) 547, Bank of Italy, Economic Research and International Relations Area.
- Maximilian Buchholz & Harald Bathelt & John A. Cantwell, 0. "Income divergence and global connectivity of U.S. urban regions," Journal of International Business Policy, Palgrave Macmillan, vol. 0, pages 1-20.
- Y. Andriyana & I. Gijbels & A. Verhasselt, 2018. "Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity," Statistical Papers, Springer, vol. 59(4), pages 1589-1621, December.
- Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ahmed, Walid M.A., 2021. "Stock market reactions to upside and downside volatility of Bitcoin: A quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2022-10-17 (Computational Economics)
- NEP-ECM-2022-10-17 (Econometrics)
- NEP-RMG-2022-10-17 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.06476. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.