IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1904.08332.html
   My bibliography  Save this paper

A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel

Author

Listed:
  • Subodh Dubey
  • Prateek Bansal
  • Ricardo A. Daziano
  • Erick Guerra

Abstract

In multinomial response models, idiosyncratic variations in the indirect utility are generally modeled using Gumbel or normal distributions. This study makes a strong case to substitute these thin-tailed distributions with a t-distribution. First, we demonstrate that a model with a t-distributed error kernel better estimates and predicts preferences, especially in class-imbalanced datasets. Our proposed specification also implicitly accounts for decision-uncertainty behavior, i.e. the degree of certainty that decision-makers hold in their choices relative to the variation in the indirect utility of any alternative. Second, after applying a t-distributed error kernel in a multinomial response model for the first time, we extend this specification to a generalized continuous-multinomial (GCM) model and derive its full-information maximum likelihood estimator. The likelihood involves an open-form expression of the cumulative density function of the multivariate t-distribution, which we propose to compute using a combination of the composite marginal likelihood method and the separation-of-variables approach. Third, we establish finite sample properties of the GCM model with a t-distributed error kernel (GCM-t) and highlight its superiority over the GCM model with a normally-distributed error kernel (GCM-N) in a Monte Carlo study. Finally, we compare GCM-t and GCM-N in an empirical setting related to preferences for electric vehicles (EVs). We observe that accounting for decision-uncertainty behavior in GCM-t results in lower elasticity estimates and a higher willingness to pay for improving the EV attributes than those of the GCM-N model. These differences are relevant in making policies to expedite the adoption of EVs.

Suggested Citation

  • Subodh Dubey & Prateek Bansal & Ricardo A. Daziano & Erick Guerra, 2019. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Papers 1904.08332, arXiv.org, revised Jan 2020.
  • Handle: RePEc:arx:papers:1904.08332
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1904.08332
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    2. Mark R. Stevens, 2017. "Does Compact Development Make People Drive Less?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 7-18, January.
    3. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    4. Klein, Nicholas J. & Guerra, Erick & Smart, Michael J., 2018. "The Philadelphia story: Age, race, gender and changing travel trends," Journal of Transport Geography, Elsevier, vol. 69(C), pages 19-25.
    5. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    6. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    7. Muehlegger, Erich & Rapson, David, 2018. "Understanding the Distributional Impacts of Vehicle Policy: Who Buys New and Used Alternative Vehicles?," Institute of Transportation Studies, Working Paper Series qt0tn4m2tx, Institute of Transportation Studies, UC Davis.
    8. Bhat, Chandra R. & Astroza, Sebastian & Hamdi, Amin S., 2017. "A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 126-148.
    9. Dekker, Thijs & Hess, Stephane & Brouwer, Roy & Hofkes, Marjan, 2016. "Decision uncertainty in multi-attribute stated preference studies," Resource and Energy Economics, Elsevier, vol. 43(C), pages 57-73.
    10. Peng Ding, 2016. "On the Conditional Distribution of the Multivariate Distribution," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 293-295, July.
    11. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    12. Bhat, Chandra R. & Dubey, Subodh K. & Nagel, Kai, 2015. "Introducing non-normality of latent psychological constructs in choice modeling with an application to bicyclist route choice," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 341-363.
    13. Rashidi, Taha Hossein & Auld, Joshua & Mohammadian, Abolfazl (Kouros), 2012. "A behavioral housing search model: Two-stage hazard-based and multinomial logit approach to choice-set formation and location selection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1097-1107.
    14. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    15. Erika Spissu & Abdul Pinjari & Ram Pendyala & Chandra Bhat, 2009. "A copula-based joint multinomial discrete–continuous model of vehicle type choice and miles of travel," Transportation, Springer, vol. 36(4), pages 403-422, July.
    16. Fang, Hao Audrey, 2008. "A discrete-continuous model of households' vehicle choice and usage, with an application to the effects of residential density," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 736-758, November.
    17. Koenker, Roger & Yoon, Jungmo, 2009. "Parametric links for binary choice models: A Fisherian-Bayesian colloquy," Journal of Econometrics, Elsevier, vol. 152(2), pages 120-130, October.
    18. Swait, Joffre, 2001. "A non-compensatory choice model incorporating attribute cutoffs," Transportation Research Part B: Methodological, Elsevier, vol. 35(10), pages 903-928, November.
    19. Brathwaite, Timothy & Walker, Joan L., 2018. "Asymmetric, closed-form, finite-parameter models of multinomial choice," Journal of choice modelling, Elsevier, vol. 29(C), pages 78-112.
    20. Patil, Priyadarshan N. & Dubey, Subodh K. & Pinjari, Abdul R. & Cherchi, Elisabetta & Daziano, Ricardo & Bhat, Chandra R., 2017. "Simulation evaluation of emerging estimation techniques for multinomial probit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 9-20.
    21. Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute of Labor Economics (IZA).
    22. Bhat, Chandra R., 2014. "The Composite Marginal Likelihood (CML) Inference Approach with Applications to Discrete and Mixed Dependent Variable Models," Foundations and Trends(R) in Econometrics, now publishers, vol. 7(1), pages 1-117, July.
    23. Tobias Börger, 2016. "Are Fast Responses More Random? Testing the Effect of Response Time on Scale in an Online Choice Experiment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(2), pages 389-413, October.
    24. Nakayama, Shoichiro & Chikaraishi, Makoto, 2015. "Unified closed-form expression of logit and weibit and its extension to a transportation network equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 672-685.
    25. Peter Craig, 2008. "A new reconstruction of multivariate normal orthant probabilities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 227-243, February.
    26. repec:ucp:bkecon:9781884829987 is not listed on IDEAS
    27. Bhat, Chandra R., 2015. "A new generalized heterogeneous data model (GHDM) to jointly model mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 50-77.
    28. Clark, William A. V. & Huang, Youqin & Withers, Suzanne, 2003. "Does commuting distance matter?: Commuting tolerance and residential change," Regional Science and Urban Economics, Elsevier, vol. 33(2), pages 199-221, March.
    29. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Extending the logit-mixed logit model for a combination of random and fixed parameters," Journal of choice modelling, Elsevier, vol. 27(C), pages 88-96.
    30. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    31. Li, Baibing, 2011. "The multinomial logit model revisited: A semi-parametric approach in discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 461-473, March.
    32. Fosgerau, M. & Bierlaire, M., 2009. "Discrete choice models with multiplicative error terms," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 494-505, June.
    33. Søren Olsen & Thomas Lundhede & Jette Jacobsen & Bo Thorsen, 2011. "Tough and Easy Choices: Testing the Influence of Utility Difference on Stated Certainty-in-Choice in Choice Experiments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(4), pages 491-510, August.
    34. Bun Song Lee & John F. McDonald, 2003. "Determinants of Commuting Time and Distance for Seoul Residents: The Impact of Family Status on the Commuting of Women," Urban Studies, Urban Studies Journal Limited, vol. 40(7), pages 1283-1302, June.
    35. Yulia V. Marchenko & Marc G. Genton, 2012. "A Heckman Selection- t Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 304-317, March.
    36. Jones, M. C., 2002. "A dependent bivariate t distribution with marginals on different degrees of freedom," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 163-170, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean Peyhardi, 2020. "Robustness of Student link function in multinomial choice models," Post-Print hal-03227808, HAL.
    2. Peyhardi, Dr Jean, 2020. "Robustness of Student link function in multinomial choice models," Journal of choice modelling, Elsevier, vol. 36(C).
    3. Rico Krueger & Michel Bierlaire & Thomas Gasos & Prateek Bansal, 2020. "Robust discrete choice models with t-distributed kernel errors," Papers 2009.06383, arXiv.org, revised Dec 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.
    2. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    3. Bhat, Chandra R. & Mondal, Aupal, 2022. "A New Flexible Generalized Heterogeneous Data Model (GHDM) with an Application to Examine the Effect of High Density Neighborhood Living on Bicycling Frequency," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 244-266.
    4. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    5. Blake, Miranda R. & Dubey, Subodh & Swait, Joffre & Lancsar, Emily & Ghijben, Peter, 2020. "An integrated modelling approach examining the influence of goals, habit and learning on choice using visual attention data," Journal of Business Research, Elsevier, vol. 117(C), pages 44-57.
    6. Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
    7. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2022. "Weibit choice models: Properties, mode choice application and graphical illustrations," Journal of choice modelling, Elsevier, vol. 44(C).
    8. del Castillo, J.M., 2016. "A class of RUM choice models that includes the model in which the utility has logistic distributed errors," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 1-20.
    9. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    10. Brathwaite, Timothy & Walker, Joan L., 2018. "Asymmetric, closed-form, finite-parameter models of multinomial choice," Journal of choice modelling, Elsevier, vol. 29(C), pages 78-112.
    11. Chandra R. Bhat & Patrícia S. Lavieri, 2018. "A new mixed MNP model accommodating a variety of dependent non-normal coefficient distributions," Theory and Decision, Springer, vol. 84(2), pages 239-275, March.
    12. Dubey, Subodh & Cats, Oded & Hoogendoorn, Serge & Bansal, Prateek, 2022. "A multinomial probit model with Choquet integral and attribute cut-offs," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 140-163.
    13. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    14. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    15. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    16. Zhao, Juanjuan & Ren, Huan & Gu, Yan & Pan, Haojie, 2023. "Relationships between the residential environment, travel attitude and behaviour among knowledge workers: The role of job types," Journal of Transport Geography, Elsevier, vol. 106(C).
    17. Erick Guerra & Shengxiao Li & Ariadna Reyes, 2022. "How do low-income commuters get to work in US and Mexican cities? A comparative empirical assessment," Urban Studies, Urban Studies Journal Limited, vol. 59(1), pages 75-96, January.
    18. Faan Chen & Adriano Borges Costa, 2024. "Exploring the causal effects of the built environment on travel behavior: a unique randomized experiment in Shanghai," Transportation, Springer, vol. 51(1), pages 215-245, February.
    19. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    20. LEE, Sungwon & LEE, Bumsoo, 2020. "Comparing the impacts of local land use and urban spatial structure on household VMT and GHG emissions," Journal of Transport Geography, Elsevier, vol. 84(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1904.08332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.