IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.06383.html
   My bibliography  Save this paper

Robust discrete choice models with t-distributed kernel errors

Author

Listed:
  • Rico Krueger
  • Michel Bierlaire
  • Thomas Gasos
  • Prateek Bansal

Abstract

Outliers in discrete choice response data may result from misclassification and misreporting of the response variable and from choice behaviour that is inconsistent with modelling assumptions (e.g. random utility maximisation). In the presence of outliers, standard discrete choice models produce biased estimates and suffer from compromised predictive accuracy. Robust statistical models are less sensitive to outliers than standard non-robust models. This paper analyses two robust alternatives to the multinomial probit (MNP) model. The two models are robit models whose kernel error distributions are heavy-tailed t-distributions to moderate the influence of outliers. The first model is the multinomial robit (MNR) model, in which a generic degrees of freedom parameter controls the heavy-tailedness of the kernel error distribution. The second model, the generalised multinomial robit (Gen-MNR) model, is more flexible than MNR, as it allows for distinct heavy-tailedness in each dimension of the kernel error distribution. For both models, we derive Gibbs samplers for posterior inference. In a simulation study, we illustrate the excellent finite sample properties of the proposed Bayes estimators and show that MNR and Gen-MNR produce more accurate estimates if the choice data contain outliers through the lens of the non-robust MNP model. In a case study on transport mode choice behaviour, MNR and Gen-MNR outperform MNP by substantial margins in terms of in-sample fit and out-of-sample predictive accuracy. The case study also highlights differences in elasticity estimates across models.

Suggested Citation

  • Rico Krueger & Michel Bierlaire & Thomas Gasos & Prateek Bansal, 2020. "Robust discrete choice models with t-distributed kernel errors," Papers 2009.06383, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2009.06383
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.06383
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar & Rivas, Ana, 2008. "Closed form expressions for choice probabilities in the Weibull case," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 373-380, May.
    2. Sungduk Kim & Ming-Hui Chen & Dipak K. Dey, 2008. "Flexible generalized t-link models for binary response data," Biometrika, Biometrika Trust, vol. 95(1), pages 93-106.
    3. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.
    4. Ding, Peng, 2014. "Bayesian robust inference of sample selection using selection-t models," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 451-464.
    5. Subodh Dubey & Prateek Bansal & Ricardo A. Daziano & Erick Guerra, 2019. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Papers 1904.08332, arXiv.org, revised Jan 2020.
    6. Jean Peyhardi, 2020. "Robustness of Student link function in multinomial choice models," Post-Print hal-03227808, HAL.
    7. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    8. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    9. Peyhardi, Dr Jean, 2020. "Robustness of Student link function in multinomial choice models," Journal of choice modelling, Elsevier, vol. 36(C).
    10. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    11. Brathwaite, Timothy & Walker, Joan L., 2018. "Asymmetric, closed-form, finite-parameter models of multinomial choice," Journal of choice modelling, Elsevier, vol. 29(C), pages 78-112.
    12. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    13. Lane F. Burgette & Erik V. Nordheim, 2012. "The Trace Restriction: An Alternative Identification Strategy for the Bayesian Multinomial Probit Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 404-410, February.
    14. Hema S Rayaprolu & Carlos Llorca & Rolf Moeckel, 2020. "Impact of bicycle highways on commuter mode choice: A scenario analysis," Environment and Planning B, , vol. 47(4), pages 662-677, May.
    15. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    16. Fosgerau, M. & Bierlaire, M., 2009. "Discrete choice models with multiplicative error terms," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 494-505, June.
    17. del Castillo, J.M., 2016. "A class of RUM choice models that includes the model in which the utility has logistic distributed errors," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 1-20.
    18. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    2. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    3. Brathwaite, Timothy & Walker, Joan L., 2018. "Asymmetric, closed-form, finite-parameter models of multinomial choice," Journal of choice modelling, Elsevier, vol. 29(C), pages 78-112.
    4. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2022. "Weibit choice models: Properties, mode choice application and graphical illustrations," Journal of choice modelling, Elsevier, vol. 44(C).
    5. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    6. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    7. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    8. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.
    9. Ruben Loaiza-Maya & Didier Nibbering, 2020. "Scalable Bayesian estimation in the multinomial probit model," Papers 2007.13247, arXiv.org, revised Mar 2021.
    10. Dogan, Osman & Taspinar, Suleyman, 2016. "Bayesian Inference in Spatial Sample Selection Models," MPRA Paper 82829, University Library of Munich, Germany.
    11. Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute of Labor Economics (IZA).
    12. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    13. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
    14. Duncan Fong & Sunghoon Kim & Zhe Chen & Wayne DeSarbo, 2016. "A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 161-183, March.
    15. Didier Nibbering, 2019. "A High-dimensional Multinomial Choice Model," Monash Econometrics and Business Statistics Working Papers 19/19, Monash University, Department of Econometrics and Business Statistics.
    16. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    17. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    18. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    19. Xu, Xiangdong & Chen, Anthony & Kitthamkesorn, Songyot & Yang, Hai & Lo, Hong K., 2015. "Modeling absolute and relative cost differences in stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 686-703.
    20. Mattsson, Lars-Göran & Weibull, Jörgen W. & Lindberg, Per Olov, 2014. "Extreme values, invariance and choice probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 81-95.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.06383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.