IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v70y2016i3p293-295.html
   My bibliography  Save this article

On the Conditional Distribution of the Multivariate Distribution

Author

Listed:
  • Peng Ding

Abstract

As alternatives to the normal distributions, t distributions are widely applied in robust analysis for data with outliers or heavy tails. The properties of the multivariate t distribution are well documented in Kotz and Nadarajah's book, which, however, states a wrong conclusion about the conditional distribution of the multivariate t distribution. Previous literature has recognized that the conditional distribution of the multivariate t distribution also follows the multivariate t distribution. We provide an intuitive proof without directly manipulating the complicated density function of the multivariate t distribution.

Suggested Citation

  • Peng Ding, 2016. "On the Conditional Distribution of the Multivariate Distribution," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 293-295, July.
  • Handle: RePEc:taf:amstat:v:70:y:2016:i:3:p:293-295
    DOI: 10.1080/00031305.2016.1164756
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2016.1164756
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2016.1164756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Peng, 2014. "Bayesian robust inference of sample selection using selection-t models," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 451-464.
    2. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    3. Yulia V. Marchenko & Marc G. Genton, 2012. "A Heckman Selection- t Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 304-317, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    2. Saulo, Helton & Vila, Roberto & Cordeiro, Shayane S. & Leiva, Víctor, 2023. "Bivariate symmetric Heckman models and their characterization," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    3. Perthame, Emeline & Forbes, Florence & Deleforge, Antoine, 2018. "Inverse regression approach to robust nonlinear high-to-low dimensional mapping," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 1-14.
    4. Wojtyś, Małgorzata & Marra, Giampiero & Radice, Rosalba, 2018. "Copula based generalized additive models for location, scale and shape with non-random sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 1-14.
    5. Emmanuel O. Ogundimu & Jane L. Hutton, 2016. "A Sample Selection Model with Skew-normal Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 172-190, March.
    6. Helton Saulo & Roberto Vila & Shayane S. Cordeiro, 2022. "Symmetric generalized Heckman models," Papers 2206.10054, arXiv.org.
    7. Wiemann, Paul F.V. & Klein, Nadja & Kneib, Thomas, 2022. "Correcting for sample selection bias in Bayesian distributional regression models," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Karol Wyszynski & Giampiero Marra, 2018. "Sample selection models for count data in R," Computational Statistics, Springer, vol. 33(3), pages 1385-1412, September.
    9. Kim, Hea-Jung, 2018. "Bayesian hierarchical robust factor analysis models for partially observed sample-selection data," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 65-82.
    10. Wojtyś, Magorzata & Marra, Giampiero & Radice, Rosalba, 2016. "Copula Regression Spline Sample Selection Models: The R Package SemiParSampleSel," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i06).
    11. Wang Miao & Peng Ding & Zhi Geng, 2016. "Identifiability of Normal and Normal Mixture Models with Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1673-1683, October.
    12. Falk, Michael, 1998. "A Note on the Comedian for Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 306-317, November.
    13. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    14. Jacob, P. & Suquet, Ch., 1997. "Regression and asymptotical location of a multivariate sample," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 173-179, September.
    15. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    16. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    17. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    18. Preinerstorfer, David & Pötscher, Benedikt M., 2017. "On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix," Econometric Theory, Cambridge University Press, vol. 33(1), pages 1-68, February.
    19. Watanabe, Hajime & Maruyama, Takuya, 2024. "A Bayesian sample selection model with a binary outcome for handling residential self-selection in individual car ownership," Journal of choice modelling, Elsevier, vol. 51(C).
    20. Mittnik, Stefan, 2014. "VaR-implied tail-correlation matrices," Economics Letters, Elsevier, vol. 122(1), pages 69-73.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:70:y:2016:i:3:p:293-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.