IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v27y2018icp88-96.html
   My bibliography  Save this article

Extending the logit-mixed logit model for a combination of random and fixed parameters

Author

Listed:
  • Bansal, Prateek
  • Daziano, Ricardo A.
  • Achtnicht, Martin

Abstract

The logit-mixed logit (LML) model, which allows the analyst to semi-parametrically specify the mixing distribution of preference heterogeneity, is a very recent advancement in logit-type choice models. In addition to generalize many previous semi- and non-parametric specifications, LML is computationally very efficient due to a computationally-convenient likelihood equation that does not require computation of choice probabilities in iterative optimization. However, the original LML formulation assumes all utility parameters to be random. This study extends LML to a combination of fixed and random parameters (LML-FR), and motivates such combination in random parameter choice models in general. We further show that the likelihood of the LML-FR specification loses its special properties, leading to a much higher estimation time. In an empirical application about preferences for alternative fuel vehicles in China, estimation time increased by a factor of 20–40 when introducing fixed parameters. Despite losses in computation efficiency, we show that the flexibility of LML-FR is essential for retrieving eventual multimodality of mixing distributions.

Suggested Citation

  • Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Extending the logit-mixed logit model for a combination of random and fixed parameters," Journal of choice modelling, Elsevier, vol. 27(C), pages 88-96.
  • Handle: RePEc:eee:eejocm:v:27:y:2018:i:c:p:88-96
    DOI: 10.1016/j.jocm.2017.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534517300714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2017.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fosgerau, Mogens & Mabit, Stefan L., 2013. "Easy and flexible mixture distributions," Economics Letters, Elsevier, vol. 120(2), pages 206-210.
    2. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    3. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    4. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    5. Jeremy T. Fox & Kyoo il Kim & Stephen P. Ryan & Patrick Bajari, 2011. "A simple estimator for the distribution of random coefficients," Quantitative Economics, Econometric Society, vol. 2(3), pages 381-418, November.
    6. Fabian Bastin & Cinzia Cirillo & Philippe L. Toint, 2010. "Estimating Nonparametric Random Utility Models with an Application to the Value of Time in Heterogeneous Populations," Transportation Science, INFORMS, vol. 44(4), pages 537-549, November.
    7. Sarrias, Mauricio & Daziano, Ricardo, 2017. "Multinomial Logit Models with Continuous and Discrete Individual Heterogeneity in R: The gmnl Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i02).
    8. Train, Kenneth, 2016. "Mixed logit with a flexible mixing distribution," Journal of choice modelling, Elsevier, vol. 19(C), pages 40-53.
    9. Patrick Bajari & Jeremy T. Fox & Stephen P. Ryan, 2007. "Linear Regression Estimation of Discrete Choice Models with Nonparametric Distributions of Random Coefficients," American Economic Review, American Economic Association, vol. 97(2), pages 459-463, May.
    10. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.
    2. Lang, Ghislaine & Farsi, Mehdi & Lanz, Bruno & Weber, Sylvain, 2021. "Energy efficiency and heating technology investments: Manipulating financial information in a discrete choice experiment," Resource and Energy Economics, Elsevier, vol. 64(C).
    3. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    4. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    5. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Comparison of parametric and semiparametric representations of unobserved preference heterogeneity in logit models," Journal of choice modelling, Elsevier, vol. 27(C), pages 97-113.
    6. Renato Perez Loyola & Erda Wang & Nannan Kang, 2021. "Economic valuation of recreational attributes using a choice experiment approach: An application to the Galapagos Islands," Tourism Economics, , vol. 27(1), pages 86-104, February.
    7. Bansal, Prateek & Hurtubia, Ricardo & Tirachini, Alejandro & Daziano, Ricardo A., 2019. "Flexible estimates of heterogeneity in crowding valuation in the New York City subway," Journal of choice modelling, Elsevier, vol. 31(C), pages 124-140.
    8. Bansal, Prateek & Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H., 2020. "Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 124-142.
    9. Sergio Colombo & Wiktor Budziński & Mikołaj Czajkowski & Klaus Glenk, 2020. "Ex-ante and ex-post measures to mitigate hypothetical bias. Are they alternative or complementary tools to increase the reliability and validity of DCE estimates?," Working Papers 2020-20, Faculty of Economic Sciences, University of Warsaw.
    10. Daziano, Ricardo A., 2020. "Flexible customer willingness to pay for bundled smart home energy products and services," Resource and Energy Economics, Elsevier, vol. 61(C).
    11. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2021. "Logit Mixed Logit Under Asymmetry and Multimodality of WTP: A Monte Carlo Evaluation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 643-662, March.
    12. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    13. I. G. Ukpong & K. G. Balcombe & I. M. Fraser & F. J. Areal, 2019. "Preferences for Mitigation of the Negative Impacts of the Oil and Gas Industry in the Niger Delta Region of Nigeria," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 811-843, October.
    14. Prateek Bansal & Rico Krueger & Michel Bierlaire & Ricardo A. Daziano & Taha H. Rashidi, 2019. "Bayesian Estimation of Mixed Multinomial Logit Models: Advances and Simulation-Based Evaluations," Papers 1904.03647, arXiv.org, revised Dec 2019.
    15. Mallikarjun Patil & Bandhan Bandhu Majumdar & Prasanta Kumar Sahu & Long T. Truong, 2021. "Evaluation of Prospective Users’ Choice Decision toward Electric Two-Wheelers Using a Stated Preference Survey: An Indian Perspective," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    16. Subodh Dubey & Prateek Bansal & Ricardo A. Daziano & Erick Guerra, 2019. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Papers 1904.08332, arXiv.org, revised Jan 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Comparison of parametric and semiparametric representations of unobserved preference heterogeneity in logit models," Journal of choice modelling, Elsevier, vol. 27(C), pages 97-113.
    2. Daziano, Ricardo A., 2020. "Flexible customer willingness to pay for bundled smart home energy products and services," Resource and Energy Economics, Elsevier, vol. 61(C).
    3. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    4. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    5. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    6. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2017. "A Monte Carlo Evaluation of the Logit-Mixed Logit under Asymmetry and Multimodality," Working Papers in Economics 17/23, University of Waikato.
    7. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    8. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    9. Caputo, Vincenzina & Scarpa, Riccardo & Nayga, Rodolfo M. & Ortega, David L., 2018. "Are preferences for food quality attributes really normally distributed? An analysis using flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 28(C), pages 10-27.
    10. Train, Kenneth, 2016. "Mixed logit with a flexible mixing distribution," Journal of choice modelling, Elsevier, vol. 19(C), pages 40-53.
    11. Bazzani, Claudia & Palma, Marco A. & Nayga, Rodolfo M., Jr., 2018. "On the use of flexible mixing distributions in WTP space: an induced value choice experiment," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(2), April.
    12. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    13. Danaf, Mazen & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Logit mixture with inter and intra-consumer heterogeneity and flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 35(C).
    14. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    15. Bansal, Prateek & Hurtubia, Ricardo & Tirachini, Alejandro & Daziano, Ricardo A., 2019. "Flexible estimates of heterogeneity in crowding valuation in the New York City subway," Journal of choice modelling, Elsevier, vol. 31(C), pages 124-140.
    16. Rico Krueger & Taha H. Rashidi & Akshay Vij, 2019. "Semi-Parametric Hierarchical Bayes Estimates of New Yorkers' Willingness to Pay for Features of Shared Automated Vehicle Services," Papers 1907.09639, arXiv.org.
    17. Florian Heiss & Stephan Hetzenecker & Maximilian Osterhaus, 2019. "Nonparametric Estimation of the Random Coefficients Model: An Elastic Net Approach," Papers 1909.08434, arXiv.org, revised Sep 2019.
    18. Heiss, Florian & Hetzenecker, Stephan & Osterhaus, Maximilian, 2019. "Nonparametric estimation of the random coefficients model: An elastic net approach," Ruhr Economic Papers 824, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    19. Heiss, Florian & Hetzenecker, Stephan & Osterhaus, Maximilian, 2022. "Nonparametric estimation of the random coefficients model: An elastic net approach," Journal of Econometrics, Elsevier, vol. 229(2), pages 299-321.
    20. Mariel, Petr & Ayala, Amaya de & Hoyos, David & Abdullah, Sabah, 2013. "Selecting random parameters in discrete choice experiment for environmental valuation: A simulation experiment," Journal of choice modelling, Elsevier, vol. 7(C), pages 44-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:27:y:2018:i:c:p:88-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.