IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v141y2020icp1-23.html
   My bibliography  Save this article

Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis

Author

Listed:
  • Tinessa, Fiore
  • Marzano, Vittorio
  • Papola, Andrea

Abstract

This paper explores the potential of a special instance of the Combination of Random Utility Models (CoRUM; Papola, 2016), termed Combination of Nested Logit (CoNL), as kernel model in conjunction with several types of mixing distributions of tastes (parametric, nonparametric, semiparametric). Various model formulations are illustrated with their mathematical properties, and several alternative kernel models are identified for comparison. An estimation exercise is presented on a real mode choice dataset from a stated preference survey on the intercity corridor between Naples and Milan in Italy. Results, in terms of both in-sample and out-of-sample goodness-of-fit on a 10-fold cross-validation show that models with the proposed CoNL kernel outperform contrasted models.

Suggested Citation

  • Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
  • Handle: RePEc:eee:transb:v:141:y:2020:i:c:p:1-23
    DOI: 10.1016/j.trb.2020.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261520303842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papola, Andrea & Tinessa, Fiore & Marzano, Vittorio, 2018. "Application of the Combination of Random Utility Models (CoRUM) to route choice," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 304-326.
    2. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    3. Yao, Jia & Chen, Anthony, 2014. "An analysis of logit and weibit route choices in stochastic assignment paradox," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 31-49.
    4. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
    5. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    6. Mogens Fosgerau, 2024. "Nonparametric approaches to describing heterogeneity," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 11, pages 308-318, Edward Elgar Publishing.
    7. McFadden, Daniel, 1980. "Econometric Models for Probabilistic Choice among Products," The Journal of Business, University of Chicago Press, vol. 53(3), pages 13-29, July.
    8. Bhat, Chandra R., 1998. "Accommodating flexible substitution patterns in multi-dimensional choice modeling: formulation and application to travel mode and departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 455-466, September.
    9. Fosgerau, Mogens & Mabit, Stefan L., 2013. "Easy and flexible mixture distributions," Economics Letters, Elsevier, vol. 120(2), pages 206-210.
    10. Michel Bierlaire, 2006. "A theoretical analysis of the cross-nested logit model," Annals of Operations Research, Springer, vol. 144(1), pages 287-300, April.
    11. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    12. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    13. Li, Baibing, 2011. "The multinomial logit model revisited: A semi-parametric approach in discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 461-473, March.
    14. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    15. Wagner A. Kamakura & Byung-Do Kim & Jonathan Lee, 1996. "Modeling Preference and Structural Heterogeneity in Consumer Choice," Marketing Science, INFORMS, vol. 15(2), pages 152-172.
    16. Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
    17. Chandra R. Bhat & Patrícia S. Lavieri, 2018. "A new mixed MNP model accommodating a variety of dependent non-normal coefficient distributions," Theory and Decision, Springer, vol. 84(2), pages 239-275, March.
    18. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    19. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    20. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    21. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    22. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    23. Papola, Andrea, 2016. "A new random utility model with flexible correlation pattern and closed-form covariance expression: The CoRUM," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 80-96.
    24. Dagsvik, John K, 1994. "Discrete and Continuous Choice, Max-Stable Processes, and Independence from Irrelevant Attributes," Econometrica, Econometric Society, vol. 62(5), pages 1179-1205, September.
    25. William H. Greene & David A. Hensher, 2013. "Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model," Applied Economics, Taylor & Francis Journals, vol. 45(14), pages 1897-1902, May.
    26. José L. Oviedo & Hong Il Yoo, 2017. "A Latent Class Nested Logit Model for Rank-Ordered Data with Application to Cork Oak Reforestation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1021-1051, December.
    27. Mattsson, Lars-Göran & Weibull, Jörgen W. & Lindberg, Per Olov, 2014. "Extreme values, invariance and choice probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 81-95.
    28. Kitthamkesorn, Songyot & Chen, Anthony, 2014. "Unconstrained weibit stochastic user equilibrium model with extensions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 1-21.
    29. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    30. Papola, Andrea, 2004. "Some developments on the cross-nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 833-851, November.
    31. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    32. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    33. Joan Walker & Jieping Li, 2007. "Latent lifestyle preferences and household location decisions," Journal of Geographical Systems, Springer, vol. 9(1), pages 77-101, April.
    34. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
    35. Brathwaite, Timothy & Walker, Joan L., 2018. "Asymmetric, closed-form, finite-parameter models of multinomial choice," Journal of choice modelling, Elsevier, vol. 29(C), pages 78-112.
    36. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    37. Angel Bujosa & Antoni Riera & Robert Hicks, 2010. "Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 477-493, December.
    38. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Extending the logit-mixed logit model for a combination of random and fixed parameters," Journal of choice modelling, Elsevier, vol. 27(C), pages 88-96.
    39. Robert Ishaq & Shlomo Bekhor & Yoram Shiftan, 2013. "A flexible model structure approach for discrete choice models," Transportation, Springer, vol. 40(3), pages 609-624, May.
    40. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    41. Hess, S. & Bierlaire, Michel & Polak, J.W., 2007. "A systematic comparison of continuous and discrete mixture models," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 37, pages 35-61.
    42. Kitthamkesorn, Songyot & Chen, Anthony, 2013. "A path-size weibit stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 378-397.
    43. Dekker, Thijs, 2016. "Asymmetric triangular mixing densities for mixed logit models," Journal of choice modelling, Elsevier, vol. 21(C), pages 48-55.
    44. Abbe, E. & Bierlaire, M. & Toledo, T., 2007. "Normalization and correlation of cross-nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 795-808, August.
    45. Koppelman, Frank S. & Wen, Chieh-Hua, 2000. "The paired combinatorial logit model: properties, estimation and application," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 75-89, February.
    46. Batley, Richard & Hess, Stephane, 2016. "Testing for regularity and stochastic transitivity using the structural parameter of nested logit," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 355-376.
    47. Xu, Xiangdong & Chen, Anthony & Kitthamkesorn, Songyot & Yang, Hai & Lo, Hong K., 2015. "Modeling absolute and relative cost differences in stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 686-703.
    48. Swait, Joffre, 2003. "Flexible Covariance Structures for Categorical Dependent Variables through Finite Mixtures of Generalized Extreme Value Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 80-87, January.
    49. Daly, Andrew & Bierlaire, Michel, 2006. "A general and operational representation of Generalised Extreme Value models," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 285-305, May.
    50. Patil, Priyadarshan N. & Dubey, Subodh K. & Pinjari, Abdul R. & Cherchi, Elisabetta & Daziano, Ricardo & Bhat, Chandra R., 2017. "Simulation evaluation of emerging estimation techniques for multinomial probit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 9-20.
    51. Marzano, Vittorio & Papola, Andrea & Simonelli, Fulvio & Vitillo, Roberta, 2013. "A practically tractable expression of the covariances of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 1-11.
    52. Wen, Chieh-Hua & Wang, Wei-Chung & Fu, Chiang, 2012. "Latent class nested logit model for analyzing high-speed rail access mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 545-554.
    53. Fosgerau, M. & Bierlaire, M., 2009. "Discrete choice models with multiplicative error terms," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 494-505, June.
    54. del Castillo, J.M., 2016. "A class of RUM choice models that includes the model in which the utility has logistic distributed errors," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 1-20.
    55. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar & Rivas, Ana, 2008. "Closed form expressions for choice probabilities in the Weibull case," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 373-380, May.
    56. Yuan, Yuan & You, Wen & Boyle, Kevin J., 2015. "A guide to heterogeneity features captured by parametric and nonparametric mixing distributions for the mixed logit model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205733, Agricultural and Applied Economics Association.
    57. Kitthamkesorn, Songyot & Chen, Anthony, 2017. "Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 291-310.
    58. Train, Kenneth, 2016. "Mixed logit with a flexible mixing distribution," Journal of choice modelling, Elsevier, vol. 19(C), pages 40-53.
    59. Patrick Bajari & Jeremy T. Fox & Stephen P. Ryan, 2007. "Linear Regression Estimation of Discrete Choice Models with Nonparametric Distributions of Random Coefficients," American Economic Review, American Economic Association, vol. 97(2), pages 459-463, May.
    60. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    61. Marzano, Vittorio & Papola, Andrea, 2008. "On the covariance structure of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 83-98, February.
    62. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    63. Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
    64. Marzano, Vittorio, 2014. "A simple procedure for the calculation of the covariances of any Generalized Extreme Value model," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 151-162.
    65. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
    66. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    67. Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
    68. Newman, Jeffrey P., 2008. "Normalization of network generalized extreme value models," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 958-969, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    2. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    3. Singh, Manjinder & Bansal, Prateek & Raj, Alok & Dixit, Aasheesh, 2023. "Eliciting preferences of Indians for air travel during COVID-19 pandemic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    2. Papola, Andrea, 2016. "A new random utility model with flexible correlation pattern and closed-form covariance expression: The CoRUM," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 80-96.
    3. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    4. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    5. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2022. "Weibit choice models: Properties, mode choice application and graphical illustrations," Journal of choice modelling, Elsevier, vol. 44(C).
    6. Danaf, Mazen & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Logit mixture with inter and intra-consumer heterogeneity and flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 35(C).
    7. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    8. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    9. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    10. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    11. Ke Wang & Chandra R. Bhat & Xin Ye, 2023. "A multinomial probit analysis of shanghai commute mode choice," Transportation, Springer, vol. 50(4), pages 1471-1495, August.
    12. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    13. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.
    14. Papola, Andrea & Tinessa, Fiore & Marzano, Vittorio, 2018. "Application of the Combination of Random Utility Models (CoRUM) to route choice," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 304-326.
    15. Bansal, Prateek & Daziano, Ricardo A. & Achtnicht, Martin, 2018. "Comparison of parametric and semiparametric representations of unobserved preference heterogeneity in logit models," Journal of choice modelling, Elsevier, vol. 27(C), pages 97-113.
    16. Marzano, Vittorio, 2014. "A simple procedure for the calculation of the covariances of any Generalized Extreme Value model," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 151-162.
    17. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    18. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).
    19. Rico Krueger & Taha H. Rashidi & Akshay Vij, 2019. "Semi-Parametric Hierarchical Bayes Estimates of New Yorkers' Willingness to Pay for Features of Shared Automated Vehicle Services," Papers 1907.09639, arXiv.org.
    20. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:141:y:2020:i:c:p:1-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.