IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v53y2024ics1755534524000514.html
   My bibliography  Save this article

Latent class choice models with an error structure: Investigating potential unobserved associations between latent segmentation and behavior generation

Author

Listed:
  • Kim, Sung Hoo
  • Mokhtarian, Patricia L.

Abstract

Latent class choice modeling has gained great popularity in the transportation and choice modeling communities across the years. However, discussion of principles associated with the specification of the class membership model has barely appeared in the literature. Related to this issue, this study questions whether one of the basic assumptions of latent class choice modeling, that of independence between latent segmentation and the behavior generation process, is tenable. We formulate latent class choice models where the unobserved influences on latent segmentation and behavior generation are correlated, by introducing an error structure reflecting that supposition. The proposed method is applied to two empirical settings. In the first application, the dependent variable is an ordinal variable measuring willingness to share autonomous vehicle rides with strangers. In the second application, the dependent variable is a binary indicator of whether a person has used ridehailing services for social purposes. In both applications, error correlations were statistically significant, indicating that the segmentation and behavior generation processes are jointly determined. Although goodness of fits and parameter estimates per se are similar to those of the standard latent class choice models for these particular applications, allowing an error structure leads to a subtle change in model implications. In particular, our scenario analyses, which present marginal effects, illustrate the value of the proposed model for considering jointness arising from correlated errors, in contrast to standard latent class models. Lastly, we propose several avenues for future research.

Suggested Citation

  • Kim, Sung Hoo & Mokhtarian, Patricia L., 2024. "Latent class choice models with an error structure: Investigating potential unobserved associations between latent segmentation and behavior generation," Journal of choice modelling, Elsevier, vol. 53(C).
  • Handle: RePEc:eee:eejocm:v:53:y:2024:i:c:s1755534524000514
    DOI: 10.1016/j.jocm.2024.100519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534524000514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2024.100519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Young, Mischa & Farber, Steven, 2019. "The Who, Why, and When of Uber and other Ride-hailing Trips: An Examination of a Large Sample Household Travel Survey," OSF Preprints x7ryj_v1, Center for Open Science.
    2. Young, Mischa & Farber, Steven, 2019. "The who, why, and when of Uber and other ride-hailing trips: An examination of a large sample household travel survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 383-392.
    3. Mokhtarian, Patricia L. & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 204-228, March.
    4. Schmidt, Alejandro & Ortúzar, Juan de Dios & Paredes, Ricardo D., 2019. "Heterogeneity and college choice: Latent class modelling for improved policy making," Journal of choice modelling, Elsevier, vol. 33(C).
    5. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    6. Young, Mischa & Farber, Steven, 2019. "The Who, Why, and When of Uber and other Ride-hailing Trips: An Examination of a Large Sample Household Travel Survey," OSF Preprints x7ryj, Center for Open Science.
    7. Vij, Akshay & Walker, Joan L., 2014. "Preference endogeneity in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 90-105.
    8. Vij, Akshay, 2013. "Incorporating the Influence of Latent Modal Preferences in Travel Demand Models," University of California Transportation Center, Working Papers qt7ng2z24q, University of California Transportation Center.
    9. de Souza Silva, Laize Andréa & de Andrade, Maurício Oliveira & Alves Maia, Maria Leonor, 2018. "How does the ride-hailing systems demand affect individual transport regulation?," Research in Transportation Economics, Elsevier, vol. 69(C), pages 600-606.
    10. Amaral, Christopher & Kolsarici, Ceren, 2020. "The financial advice puzzle: The role of consumer heterogeneity in the advisor choice," Journal of Retailing and Consumer Services, Elsevier, vol. 54(C).
    11. Barbour, Natalia & Menon, Nikhil & Zhang, Yu & Mannering, Fred, 2019. "Shared automated vehicles: A statistical analysis of consumer use likelihoods and concerns," Transport Policy, Elsevier, vol. 80(C), pages 86-93.
    12. James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
    13. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.
    14. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    15. Hetrakul, Pratt & Cirillo, Cinzia, 2013. "Accommodating taste heterogeneity in railway passenger choice models based on internet booking data," Journal of choice modelling, Elsevier, vol. 6(C), pages 1-16.
    16. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    17. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, November.
    18. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    19. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    20. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    21. Joan Walker & Jieping Li, 2007. "Latent lifestyle preferences and household location decisions," Journal of Geographical Systems, Springer, vol. 9(1), pages 77-101, April.
    22. Tang, Wei & Mokhtarian, Patricia L, 2009. "Accounting for Taste Heterogeneity in Purchase Channel Intention Modeling: An Example from Northern California for Book Purchases," Institute of Transportation Studies, Working Paper Series qt9mg5s5g8, Institute of Transportation Studies, UC Davis.
    23. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    24. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    25. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Comparisons of observed and unobserved parameter heterogeneity in modeling vehicle-miles driven," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    26. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    27. Teichert, Thorsten & Shehu, Edlira & von Wartburg, Iwan, 2008. "Customer segmentation revisited: The case of the airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 227-242, January.
    28. Kim, Sung Hoo & Circella, Giovanni & Mokhtarian, Patricia L., 2019. "Identifying latent mode-use propensity segments in an all-AV era," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 192-207.
    29. Bago d'Uva, Teresa & Jones, Andrew M. & van Doorslaer, Eddy, 2009. "Measurement of horizontal inequity in health care utilisation using European panel data," Journal of Health Economics, Elsevier, vol. 28(2), pages 280-289, March.
    30. Vij, Akshay, 2013. "Incorporating the Influence of Latent Modal Preferences in Travel Demand Models," University of California Transportation Center, Working Papers qt7nq9p0cv, University of California Transportation Center.
    31. Brown, Sarah & Durand, Robert B. & Harris, Mark N. & Weterings, Tim, 2014. "Modelling financial satisfaction across life stages: A latent class approach," Journal of Economic Psychology, Elsevier, vol. 45(C), pages 117-127.
    32. Maddala, G.S., 1986. "Disequilibrium, self-selection, and switching models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 3, chapter 28, pages 1633-1688, Elsevier.
    33. Wen, Chieh-Hua & Wang, Wei-Chung & Fu, Chiang, 2012. "Latent class nested logit model for analyzing high-speed rail access mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 545-554.
    34. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    35. Subodh Dubey & Prateek Bansal & Ricardo A. Daziano & Erick Guerra, 2019. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Papers 1904.08332, arXiv.org, revised Jan 2020.
    36. Sabreena Anowar & Shamsunnahar Yasmin & Naveen Eluru & Luis Miranda-Moreno, 2014. "Analyzing car ownership in Quebec City: a comparison of traditional and latent class ordered and unordered models," Transportation, Springer, vol. 41(5), pages 1013-1039, September.
    37. Greene, William & Harris, Mark N. & Hollingsworth, Bruce & Maitra, Pushkar, 2014. "A latent class model for obesity," Economics Letters, Elsevier, vol. 123(1), pages 1-5.
    38. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    39. Vij, Akshay & Carrel, André & Walker, Joan L., 2013. "Incorporating the influence of latent modal preferences on travel mode choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 164-178.
    40. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    2. Kim, Sung Hoo & Mokhtarian, Patricia L., 2018. "Taste heterogeneity as an alternative form of endogeneity bias: Investigating the attitude-moderated effects of built environment and socio-demographics on vehicle ownership using latent class modelin," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 130-150.
    3. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Comparisons of observed and unobserved parameter heterogeneity in modeling vehicle-miles driven," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    4. Zhou, Heng & Norman, Richard & Xia, Jianhong(Cecilia) & Hughes, Brett & Kelobonye, Keone & Nikolova, Gabi & Falkmer, Torbjorn, 2020. "Analysing travel mode and airline choice using latent class modelling: A case study in Western Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 187-205.
    5. Sanjana Hossain & Md. Sami Hasnine & Khandker Nurul Habib, 2021. "A latent class joint mode and departure time choice model for the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 48(3), pages 1217-1239, June.
    6. Xuemei Fu, 2021. "How habit moderates the commute mode decision process: integration of the theory of planned behavior and latent class choice model," Transportation, Springer, vol. 48(5), pages 2681-2707, October.
    7. Fowri, Hamid R. & Seyedabrishami, Seyedehsan, 2020. "Assessment of urban transportation pricing policies with incorporation of unobserved heterogeneity," Transport Policy, Elsevier, vol. 99(C), pages 12-19.
    8. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).
    9. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    10. Keskisaari, Ville & Ottelin, Juudit & Heinonen, Jukka, 2017. "Greenhouse gas impacts of different modality style classes using latent class travel behavior model," Journal of Transport Geography, Elsevier, vol. 65(C), pages 155-164.
    11. Kim, Seheon & Rasouli, Soora, 2022. "The influence of latent lifestyle on acceptance of Mobility-as-a-Service (MaaS): A hierarchical latent variable and latent class approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 304-319.
    12. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    13. Vij, Akshay & Gorripaty, Sreeta & Walker, Joan L., 2017. "From trend spotting to trend ’splaining: Understanding modal preference shifts in the San Francisco Bay Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 238-258.
    14. Xuemei Fu & Zhicai Juan, 2017. "Accommodating preference heterogeneity in commuting mode choice: an empirical investigation in Shaoxing, China," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 434-448, May.
    15. Ahmadreza Faghih-Imani & Naveen Eluru, 2020. "A finite mixture modeling approach to examine New York City bicycle sharing system (CitiBike) users’ destination preferences," Transportation, Springer, vol. 47(2), pages 529-553, April.
    16. Alemi, Farzad & Circella, Giovanni & Mokhtarian, Patricia & Handy, Susan, 2018. "Exploring the latent constructs behind the use of ridehailing in California," Journal of choice modelling, Elsevier, vol. 29(C), pages 47-62.
    17. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    18. Rezwana Rafiq & Michael G. McNally, 2023. "An exploratory analysis of alternative travel behaviors of ride-hailing users," Transportation, Springer, vol. 50(2), pages 571-605, April.
    19. Khakdaman, Masoud & Rezaei, Jafar & Tavasszy, Lóránt, 2022. "Shippers’ willingness to use flexible transportation services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 1-20.
    20. Silm, Siiri & Tominga, Ago & Saidla, Karl & Poom, Age & Tammaru, Tiit, 2024. "Socio-economic and residential differences in urban modality styles based on a long-term smartphone experiment," Journal of Transport Geography, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:53:y:2024:i:c:s1755534524000514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.