IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp11042.html
   My bibliography  Save this paper

A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System

Author

Listed:
  • Piatek, Rémi

    (University of Copenhagen)

  • Gensowski, Miriam

    (Rockwool Foundation Research Unit)

Abstract

We develop a parametrization of the multinomial probit model that yields greater insight into the underlying decision-making process, by decomposing the error terms of the utilities into latent factors and noise. The latent factors are identified without a measurement system, and they can be meaningfully linked to an economic model. We provide sufficient conditions that make this structure identified and interpretable. For inference, we design a Markov chain Monte Carlo sampler based on marginal data augmentation. A simulation exercise shows the good numerical performance of our sampler and reveals the practical importance of alternative identification restrictions. Our approach can generally be applied to any setting where researchers can specify an a priori structure on a few drivers of unobserved heterogeneity. One such example is the choice of combinations of two options, which we explore with real data on education and occupation pairs.

Suggested Citation

  • Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp11042
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp11042.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Axel Borsch-Supan & Vassilis Hajivassiliou & Laurence J. Kotlikoff, 1992. "Health, Children, and Elderly Living Arrangements: A Multiperiod-Multinomial Probit Model with Unobserved Heterogeneity and Autocorrelated Errors," NBER Chapters, in: Topics in the Economics of Aging, pages 79-108, National Bureau of Economic Research, Inc.
    2. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    3. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    4. Donghoon Lee, 2005. "An Estimable Dynamic General Equilibrium Model Of Work, Schooling, And Occupational Choice," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(1), pages 1-34, February.
    5. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    7. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    8. Xuemei Fu & Zhicai Juan, 2017. "Estimation of multinomial probit-kernel integrated choice and latent variable model: comparison on one sequential and two simultaneous approaches," Transportation, Springer, vol. 44(1), pages 91-116, January.
    9. Lane F. Burgette & Erik V. Nordheim, 2012. "The Trace Restriction: An Alternative Identification Strategy for the Bayesian Multinomial Probit Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 404-410, February.
    10. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    11. Elrod, Terry & Keane, Michael, 1995. "A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data," MPRA Paper 52434, University Library of Munich, Germany.
    12. Bhat, Chandra R. & Dubey, Subodh K., 2014. "A new estimation approach to integrate latent psychological constructs in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 68-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.
    2. Ruben Loaiza-Maya & Didier Nibbering, 2020. "Scalable Bayesian Estimation in the Multinomial Probit Model," Monash Econometrics and Business Statistics Working Papers 25/20, Monash University, Department of Econometrics and Business Statistics.
    3. Regina Akello & Alice Turinawe & Pieter Wauters & Diego Naziri, 2022. "Factors Influencing the Choice of Storage Technologies by Smallholder Potato Farmers in Eastern and Southwestern Uganda," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    4. Subodh Dubey & Prateek Bansal & Ricardo A. Daziano & Erick Guerra, 2019. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Papers 1904.08332, arXiv.org, revised Jan 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    2. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    3. Didier Nibbering, 2019. "A High-dimensional Multinomial Choice Model," Monash Econometrics and Business Statistics Working Papers 19/19, Monash University, Department of Econometrics and Business Statistics.
    4. Ruben Loaiza-Maya & Didier Nibbering, 2020. "Scalable Bayesian estimation in the multinomial probit model," Papers 2007.13247, arXiv.org, revised Mar 2021.
    5. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
    6. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    7. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    8. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
    9. Raja Chakir & Olivier Parent, 2009. "Determinants of land use changes: A spatial multinomial probit approach," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
    10. Veettil, Prakashan Chellattan & Speelman, Stijn & Frija, Aymen & Buysse, Jeroen & van Huylenbroeck, Guido, 2011. "Complementarity between water pricing, water rights and local water governance: A Bayesian analysis of choice behaviour of farmers in the Krishna river basin, India," Ecological Economics, Elsevier, vol. 70(10), pages 1756-1766, August.
    11. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    12. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    13. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    14. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    15. Maksym, Obrizan, 2010. "A Bayesian Model of Sample Selection with a Discrete Outcome Variable," MPRA Paper 28577, University Library of Munich, Germany.
    16. Park, Sang Soo & Lee, Chung-Ki, 2011. "베이지안 추정법을 이용한 주택선택의 다항프로빗 모형 분석 [Analysis of housing choice using multinomial probit model – Bayesian estimation]," MPRA Paper 37150, University Library of Munich, Germany.
    17. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    18. Duncan Fong & Sunghoon Kim & Zhe Chen & Wayne DeSarbo, 2016. "A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 161-183, March.
    19. Aßmann, Christian, 2007. "Determinants and Costs of Current Account Reversals under Heterogeneity and Serial Correlation," Economics Working Papers 2007-17, Christian-Albrechts-University of Kiel, Department of Economics.
    20. Sumeetpal S. Singh & Nicolas Chopin & Nick Whiteley, 2010. "Bayesian Learning of Noisy Markov Decision Processes," Working Papers 2010-36, Center for Research in Economics and Statistics.

    More about this item

    Keywords

    multinomial probit; latent factors; Bayesian analysis; marginal data augmentation; educational choice; occupational choice;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp11042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.