IDEAS home Printed from https://ideas.repec.org/f/pla653.html
   My authors  Follow this author

Alberto J. Lamadrid

Personal Details

First Name:Alberto
Middle Name:J.
Last Name:Lamadrid
Suffix:
RePEc Short-ID:pla653
[This author has chosen not to make the email address public]
https://www.lehigh.edu/~all512/

Affiliation

Economics Department
College of Business and Economics
Lehigh University

Bethlehem, Pennsylvania (United States)
http://cbe.lehigh.edu/economics
RePEc:edi:eclehus (more details at EDIRC)

Research output

as
Jump to: Working papers Articles Chapters

Working papers

  1. Xin Shi & Alberto J. Lamadrid L. & Luis F. Zuluaga, 2021. "Revenue Adequate Prices for Chance-Constrained Electricity Markets with Variable Renewable Energy Sources," Papers 2105.01233, arXiv.org.
  2. Lamadrid, Alberto J. & Mount, Timothy D. & Thomas, Robert J., 2011. "Integration of Stochastic Power Generation, Geographical Averaging and Load Response," Working Papers 126540, Cornell University, Department of Applied Economics and Management.
  3. Mount, Timothy D. & Maneevitjit, Surin & Lamadrid, Alberto J. & Zimmerman, Ray D. & Thomas, Robert J., 2011. "The Hidden System Costs Of Wind Generation In A Deregulated Electricity Market," Working Papers 126529, Cornell University, Department of Applied Economics and Management.
  4. Conrad, Jon M. & Gomez, Miguel I. & Lamadrid, Alberto J., 2010. "Wine in Your Knapsack?," Working Papers 126966, Cornell University, Department of Applied Economics and Management.

Articles

  1. S. Wogrin & D. Tejada-Arango & S. Delikaraoglou & A. Lamadrid & A. Botterud, 2022. "The impact of convexity on expansion planning in low-carbon electricity markets," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 574-593, October.
  2. Arias-Gaviria, Jessica & Arango-Aramburo, Santiago & Lamadrid L, Alberto J., 2022. "The effects of high penetrations of renewable energy sources in cycles for electricity markets: An experimental analysis," Energy Policy, Elsevier, vol. 166(C).
  3. Tapia, Tomás & Lorca, Álvaro & Olivares, Daniel & Negrete-Pincetic, Matías & Lamadrid L, Alberto J., 2021. "A robust decision-support method based on optimization and simulation for wildfire resilience in highly renewable power systems," European Journal of Operational Research, Elsevier, vol. 294(2), pages 723-733.
  4. Diana Mitsova & Monica Escaleras & Alka Sapat & Ann-Margaret Esnard & Alberto J. Lamadrid, 2019. "The Effects of Infrastructure Service Disruptions and Socio-Economic Vulnerability on Hurricane Recovery," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
  5. Kuang, Xiaolong & Lamadrid, Alberto J. & Zuluaga, Luis F., 2019. "Pricing in non-convex markets with quadratic deliverability costs," Energy Economics, Elsevier, vol. 80(C), pages 123-131.
  6. Wooyoung Jeon, Alberto J. Lamadrid, and Timothy D. Mount, 2019. "The Economic Value of Distributed Storage at Different Locations on an Electric Grid," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  7. Sedzro, Kwami Senam A. & Kishore, Shalinee & Lamadrid, Alberto J. & Zuluaga, Luis F., 2018. "Stochastic risk-sensitive market integration for renewable energy: Application to ocean wave power plants," Applied Energy, Elsevier, vol. 229(C), pages 474-481.
  8. Moarefdoost, M. Mohsen & Lamadrid, Alberto J. & Zuluaga, Luis F., 2016. "A robust model for the ramp-constrained economic dispatch problem with uncertain renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 310-325.
  9. Lamadrid, Alberto J. & Maneevitjit, Surin & Mount, Timothy D., 2016. "The economic value of transmission lines and the implications for planning models," Energy Economics, Elsevier, vol. 57(C), pages 1-15.
  10. Wooyoung Jeon & Alberto Lamadrid & Jung Mo & Timothy Mount, 2015. "Using deferrable demand in a smart grid to reduce the cost of electricity for customers," Journal of Regulatory Economics, Springer, vol. 47(3), pages 239-272, June.
  11. Jenner, Steffen & Lamadrid, Alberto J., 2013. "Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States," Energy Policy, Elsevier, vol. 53(C), pages 442-453.
  12. Lamadrid, Alberto J. & Mount, Tim, 2012. "Ancillary services in systems with high penetrations of renewable energy sources, the case of ramping," Energy Economics, Elsevier, vol. 34(6), pages 1959-1971.
  13. Timothy D. Mount, Surin Maneevitjit, Alberto J. Lamadrid, Ray D. Zimmerman, and Robert J. Thomas, 2012. "The Hidden System Costs of Wind Generation in a Deregulated Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).

Chapters

  1. Alberto J. Lamadrid L., 2021. "Economic Management of Electric Power Systems," International Series in Operations Research & Management Science, in: Chialin Chen & Yihsu Chen & Vaidyanathan Jayaraman (ed.), Pursuing Sustainability, chapter 0, pages 279-313, Springer.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Lamadrid, Alberto J. & Mount, Timothy D. & Thomas, Robert J., 2011. "Integration of Stochastic Power Generation, Geographical Averaging and Load Response," Working Papers 126540, Cornell University, Department of Applied Economics and Management.

    Cited by:

    1. Lamadrid, Alberto J. & Mount, Tim, 2012. "Ancillary services in systems with high penetrations of renewable energy sources, the case of ramping," Energy Economics, Elsevier, vol. 34(6), pages 1959-1971.

  2. Mount, Timothy D. & Maneevitjit, Surin & Lamadrid, Alberto J. & Zimmerman, Ray D. & Thomas, Robert J., 2011. "The Hidden System Costs Of Wind Generation In A Deregulated Electricity Market," Working Papers 126529, Cornell University, Department of Applied Economics and Management.

    Cited by:

    1. Lion Hirth & Falko Ueckerdt, 2012. "Redistribution Effects of Energy and Climate Policy: The Electricity Market," Working Papers 2012.82, Fondazione Eni Enrico Mattei.
    2. Haroon Bhorat & Ravi Kanbur & Natasha Mayet, 2013. "A Note on Measuring the Depth of Minimum Wage Violation," LABOUR, CEIS, vol. 27(2), pages 192-197, June.
    3. Lauren Knapp & Jacob Ladenburg, 2015. "How Spatial Relationships Influence Economic Preferences for Wind Power—A Review," Energies, MDPI, vol. 8(6), pages 1-25, June.
    4. Daraeepour, Ali & Patino-Echeverri, Dalia & Conejo, Antonio J., 2019. "Economic and environmental implications of different approaches to hedge against wind production uncertainty in two-settlement electricity markets: A PJM case study," Energy Economics, Elsevier, vol. 80(C), pages 336-354.
    5. Hanson, Donald & Schmalzer, David & Nichols, Christopher & Balash, Peter, 2016. "The impacts of meeting a tight CO2 performance standard on the electric power sector," Energy Economics, Elsevier, vol. 60(C), pages 476-485.
    6. Andreas Gerster, 2016. "Negative price spikes at power markets: the role of energy policy," Journal of Regulatory Economics, Springer, vol. 50(3), pages 271-289, December.
    7. Lamadrid, Alberto J. & Maneevitjit, Surin & Mount, Timothy D., 2016. "The economic value of transmission lines and the implications for planning models," Energy Economics, Elsevier, vol. 57(C), pages 1-15.
    8. Karim L. Anaya & Michael G. Pollitt, 2019. "Storage Business Models: Lessons for Electricity from Cloud Data, Frozen Food and Natural Gas," The Energy Journal, , vol. 40(1_suppl), pages 409-432, June.
    9. Lamadrid, Alberto J. & Mount, Tim, 2012. "Ancillary services in systems with high penetrations of renewable energy sources, the case of ramping," Energy Economics, Elsevier, vol. 34(6), pages 1959-1971.
    10. Arias-Gaviria, Jessica & Arango-Aramburo, Santiago & Lamadrid L, Alberto J., 2022. "The effects of high penetrations of renewable energy sources in cycles for electricity markets: An experimental analysis," Energy Policy, Elsevier, vol. 166(C).
    11. Stephan Nagl, Michaela Fursch, and Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," RSCAS Working Papers 2011/45, European University Institute.
    13. Lion Hirth, 2012. "The Market Value of Variable Renewables," Working Papers 2012.15, Fondazione Eni Enrico Mattei.
    14. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    15. Stephan Nagl & Michaela Fürsch & Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, , vol. 34(4), pages 151-180, October.
    16. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    17. Peeter Pikk & Marko Viiding, 2013. "The dangers of marginal cost based electricity pricing," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 13(1), pages 49-62, July.
    18. Chen, Yihsu & Zhang, Duan & Takashima, Ryuta, 2019. "Carbon emission forensic in the energy sector: Is it worth the effort?," Energy Policy, Elsevier, vol. 128(C), pages 868-878.
    19. Gerster, Andreas, 2016. "Negative price spikes at power markets: The role of energy policy," Ruhr Economic Papers 636, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    20. Okazaki, Toru & Shirai, Yasuyuki & Nakamura, Taketsune, 2015. "Concept study of wind power utilizing direct thermal energy conversion and thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 332-338.
    21. Michael Bucksteeg & Stephan Spiecker & Christoph Weber, 2019. "Impact of Coordinated Capacity Mechanisms on the European Power Market," The Energy Journal, , vol. 40(2), pages 221-264, March.
    22. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    23. Wooyoung Jeon & Alberto Lamadrid & Jung Mo & Timothy Mount, 2015. "Using deferrable demand in a smart grid to reduce the cost of electricity for customers," Journal of Regulatory Economics, Springer, vol. 47(3), pages 239-272, June.
    24. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    25. Dowds, Jonathan & Hines, Paul & Ryan, Todd & Buchanan, William & Kirby, Elizabeth & Apt, Jay & Jaramillo, Paulina, 2015. "A review of large-scale wind integration studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 768-794.
    26. Khan, Muhammad Imran & Gutiérrez-Alvarez, R. & Asfand, Faisal & Bicer, Yusuf & Sgouridis, Sgouris & Al-Ghamdi, Sami G. & Jouhara, Hussam & Asif, M. & Kurniawan, Tonni Agustiono & Abid, Muhammad & Pesy, 2024. "The economics of concentrating solar power (CSP): Assessing cost competitiveness and deployment potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).

  3. Conrad, Jon M. & Gomez, Miguel I. & Lamadrid, Alberto J., 2010. "Wine in Your Knapsack?," Working Papers 126966, Cornell University, Department of Applied Economics and Management.

    Cited by:

    1. Olivier Gergaud & Victor Ginsburgh & Juan D. Moreno-Ternero, 2021. "Wine ratings: seeking a consensus among tasters via normalization, approval and aggregation," Working Papers 21.05, Universidad Pablo de Olavide, Department of Economics.

Articles

  1. Arias-Gaviria, Jessica & Arango-Aramburo, Santiago & Lamadrid L, Alberto J., 2022. "The effects of high penetrations of renewable energy sources in cycles for electricity markets: An experimental analysis," Energy Policy, Elsevier, vol. 166(C).

    Cited by:

    1. Komorowska, Aleksandra & Kaszyński, Przemysław & Kamiński, Jacek, 2023. "Where does the capacity market money go? Lessons learned from Poland," Energy Policy, Elsevier, vol. 173(C).

  2. Tapia, Tomás & Lorca, Álvaro & Olivares, Daniel & Negrete-Pincetic, Matías & Lamadrid L, Alberto J., 2021. "A robust decision-support method based on optimization and simulation for wildfire resilience in highly renewable power systems," European Journal of Operational Research, Elsevier, vol. 294(2), pages 723-733.

    Cited by:

    1. Jesus Beyza & Jose M. Yusta, 2021. "Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures," Energies, MDPI, vol. 14(7), pages 1-18, April.
    2. Wei, Yian & Cheng, Yao & Liao, Haitao, 2024. "Optimal resilience-based restoration of a system subject to recurrent dependent hazards," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    4. Zhang, Tao & Li, Hong-Zhou & Xie, Bai-Chen, 2022. "Have renewables and market-oriented reforms constrained the technical efficiency improvement of China's electric grid utilities?," Energy Economics, Elsevier, vol. 114(C).

  3. Diana Mitsova & Monica Escaleras & Alka Sapat & Ann-Margaret Esnard & Alberto J. Lamadrid, 2019. "The Effects of Infrastructure Service Disruptions and Socio-Economic Vulnerability on Hurricane Recovery," Sustainability, MDPI, vol. 11(2), pages 1-16, January.

    Cited by:

    1. Mahyar Ghorbanzadeh & Mohammadreza Koloushani & Mehmet Baran Ulak & Eren Erman Ozguven & Reza Arghandeh Jouneghani, 2020. "Statistical and Spatial Analysis of Hurricane-induced Roadway Closures and Power Outages," Energies, MDPI, vol. 13(5), pages 1-18, March.
    2. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    3. Stefanie S. Schulze & Erica C. Fischer & Sara Hamideh & Hussam Mahmoud, 2020. "Wildfire impacts on schools and hospitals following the 2018 California Camp Fire," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 901-925, October.
    4. Sara Hamideh & Payel Sen & Erica Fischer, 2022. "Wildfire impacts on education and healthcare: Paradise, California, after the Camp Fire," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 353-387, March.

  4. Kuang, Xiaolong & Lamadrid, Alberto J. & Zuluaga, Luis F., 2019. "Pricing in non-convex markets with quadratic deliverability costs," Energy Economics, Elsevier, vol. 80(C), pages 123-131.

    Cited by:

    1. Ratha, Anubhav & Pinson, Pierre & Le Cadre, Hélène & Virag, Ana & Kazempour, Jalal, 2023. "Moving from linear to conic markets for electricity," European Journal of Operational Research, Elsevier, vol. 309(2), pages 762-783.
    2. Hacopian Dolatabadi, Sarineh & Latify, Mohammad Amin & Karshenas, Hamidreza & Sharifi, Alimorad, 2024. "Demand response mechanisms: A new debate on internalizing power generation sector negative technical spillovers," Energy, Elsevier, vol. 301(C).
    3. S. Wogrin & D. Tejada-Arango & S. Delikaraoglou & A. Lamadrid & A. Botterud, 2022. "The impact of convexity on expansion planning in low-carbon electricity markets," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 574-593, October.
    4. Hacopian Dolatabadi, Sarineh & Latify, Mohammad Amin & Karshenas, Hamidreza & Sharifi, Alimorad, 2022. "On pricing issues in electricity markets in the presence of externalities," Energy, Elsevier, vol. 246(C).
    5. Hung-po Chao, 2019. "Incentives for efficient pricing mechanism in markets with non-convexities," Journal of Regulatory Economics, Springer, vol. 56(1), pages 33-58, August.
    6. Alberto J. Lamadrid & Hao Lu & Timothy D. Mount, 2024. "A simple way to integrate distributed storage into a wholesale electricity market," Journal of Regulatory Economics, Springer, vol. 65(1), pages 27-63, June.
    7. Xin Shi & Alberto J. Lamadrid L. & Luis F. Zuluaga, 2021. "Revenue Adequate Prices for Chance-Constrained Electricity Markets with Variable Renewable Energy Sources," Papers 2105.01233, arXiv.org.
    8. Bichler, Martin & Knörr, Johannes, 2023. "Getting prices right on electricity spot markets: On the economic impact of advanced power flow models," Energy Economics, Elsevier, vol. 126(C).

  5. Wooyoung Jeon, Alberto J. Lamadrid, and Timothy D. Mount, 2019. "The Economic Value of Distributed Storage at Different Locations on an Electric Grid," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).

    Cited by:

    1. Huang, Xiaodan & Zhang, Hongyu & Zhang, Xiliang, 2020. "Decarbonising electricity systems in major cities through renewable cooperation – A case study of Beijing and Zhangjiakou," Energy, Elsevier, vol. 190(C).
    2. Joseph Nyangon & John Byrne, 2023. "Estimating the impacts of natural gas power generation growth on solar electricity development: PJM's evolving resource mix and ramping capability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    3. Alberto J. Lamadrid & Hao Lu & Timothy D. Mount, 2024. "A simple way to integrate distributed storage into a wholesale electricity market," Journal of Regulatory Economics, Springer, vol. 65(1), pages 27-63, June.

  6. Sedzro, Kwami Senam A. & Kishore, Shalinee & Lamadrid, Alberto J. & Zuluaga, Luis F., 2018. "Stochastic risk-sensitive market integration for renewable energy: Application to ocean wave power plants," Applied Energy, Elsevier, vol. 229(C), pages 474-481.

    Cited by:

    1. Crespo-Vazquez, Jose L. & Carrillo, C. & Diaz-Dorado, E. & Martinez-Lorenzo, Jose A. & Noor-E-Alam, Md., 2018. "A machine learning based stochastic optimization framework for a wind and storage power plant participating in energy pool market," Applied Energy, Elsevier, vol. 232(C), pages 341-357.
    2. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Gibescu, Madeleine, 2024. "Light robust co-optimization of energy and reserves in the day-ahead electricity market," Applied Energy, Elsevier, vol. 353(PA).

  7. Moarefdoost, M. Mohsen & Lamadrid, Alberto J. & Zuluaga, Luis F., 2016. "A robust model for the ramp-constrained economic dispatch problem with uncertain renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 310-325.

    Cited by:

    1. Michael G. Pollitt & Karim L. Anaya, 2020. "Competition in Markets for Ancillary Services? The Implications of Rising Distributed Generation," The Energy Journal, , vol. 41(1_suppl), pages 5-32, June.
    2. Daraeepour, Ali & Patino-Echeverri, Dalia & Conejo, Antonio J., 2019. "Economic and environmental implications of different approaches to hedge against wind production uncertainty in two-settlement electricity markets: A PJM case study," Energy Economics, Elsevier, vol. 80(C), pages 336-354.
    3. Venter, Philip van Zyl & Terblanche, Stephanus Esias & van Eldik, Martin, 2018. "Turbine investment optimisation for energy recovery plants by utilising historic steam flow profiles," Energy, Elsevier, vol. 155(C), pages 668-677.
    4. Li, Yuan & Zhou, You & Yi, Bo-Wen & Wang, Ya, 2021. "Impacts of the coal resource tax on the electric power industry in China: A multi-regional comprehensive analysis," Resources Policy, Elsevier, vol. 70(C).
    5. Bo-Wen Yi & Wolfgang Eichhammer & Benjamin Pfluger & Ying Fan & Jin-Hua Xu, 2019. "The Spatial Deployment of Renewable Energy Based on China’s Coal-heavy Generation Mix and Inter-regional Transmission Grid," The Energy Journal, , vol. 40(4), pages 45-74, July.
    6. Wei, Yi-Ming & Chen, Hao & Chyong, Chi Kong & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun, 2018. "Economic dispatch savings in the coal-fired power sector: An empirical study of China," Energy Economics, Elsevier, vol. 74(C), pages 330-342.
    7. Hao Chen & Chi Kong Chyong & Jia-Ning Kang & Yi-Ming Wei, 2018. "Economic dispatch in the electricity sector in China: potential benefits and challenges ahead," Working Papers EPRG 1819, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).
    9. Hlalele, Thabo G. & Naidoo, Raj M. & Bansal, Ramesh C. & Zhang, Jiangfeng, 2020. "Multi-objective stochastic economic dispatch with maximal renewable penetration under renewable obligation," Applied Energy, Elsevier, vol. 270(C).
    10. Alberto J. Lamadrid & Hao Lu & Timothy D. Mount, 2024. "A simple way to integrate distributed storage into a wholesale electricity market," Journal of Regulatory Economics, Springer, vol. 65(1), pages 27-63, June.

  8. Lamadrid, Alberto J. & Maneevitjit, Surin & Mount, Timothy D., 2016. "The economic value of transmission lines and the implications for planning models," Energy Economics, Elsevier, vol. 57(C), pages 1-15.

    Cited by:

    1. Karhinen, Santtu & Huuki, Hannu, 2020. "How are the long distances between renewable energy sources and load centres reflected in locational marginal prices?," Energy, Elsevier, vol. 210(C).
    2. Huang, Wencheng & Zhang, Yue & Shuai, Bin & Xu, Minhao & Xiao, Wei & Zhang, Rui & Xu, Yifei, 2019. "China railway industry reform evolution approach: Based on the Vertical Separation Model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 546-556.

  9. Wooyoung Jeon & Alberto Lamadrid & Jung Mo & Timothy Mount, 2015. "Using deferrable demand in a smart grid to reduce the cost of electricity for customers," Journal of Regulatory Economics, Springer, vol. 47(3), pages 239-272, June.

    Cited by:

    1. Andreas Gerster, 2016. "Negative price spikes at power markets: the role of energy policy," Journal of Regulatory Economics, Springer, vol. 50(3), pages 271-289, December.
    2. Paulo Moisés Costa & Nuno Bento & Vítor Marques, 2017. "The Impact of Regulation on a Firm’s Incentives to Invest in Emergent Smart Grid Technologies," The Energy Journal, , vol. 38(2), pages 149-174, March.
    3. Wooyoung Jeon & Sangmin Cho & Seungmoon Lee, 2020. "Estimating the Impact of Electric Vehicle Demand Response Programs in a Grid with Varying Levels of Renewable Energy Sources: Time-of-Use Tariff versus Smart Charging," Energies, MDPI, vol. 13(17), pages 1-22, August.
    4. Jeon, Wooyoung & Mo, Jung Youn, 2018. "The true economic value of supply-side energy storage in the smart grid environment – The case of Korea," Energy Policy, Elsevier, vol. 121(C), pages 101-111.
    5. Jung Youn Mo & Wooyoung Jeon, 2017. "How Does Energy Storage Increase the Efficiency of an Electricity Market with Integrated Wind and Solar Power Generation?—A Case Study of Korea," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    6. Wooyoung Jeon & Chul-Yong Lee, 2019. "Estimating the Cost of Solar Generation Uncertainty and the Impact of Collocated Energy Storage: The Case of Korea," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    7. Gerster, Andreas, 2016. "Negative price spikes at power markets: The role of energy policy," Ruhr Economic Papers 636, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Alberto J. Lamadrid & Hao Lu & Timothy D. Mount, 2024. "A simple way to integrate distributed storage into a wholesale electricity market," Journal of Regulatory Economics, Springer, vol. 65(1), pages 27-63, June.

  10. Jenner, Steffen & Lamadrid, Alberto J., 2013. "Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States," Energy Policy, Elsevier, vol. 53(C), pages 442-453.

    Cited by:

    1. Katie Jo Black & Shawn J. McCoy & Jeremy G. Weber, 2018. "When Externalities Are Taxed: The Effects and Incidence of Pennsylvania’s Impact Fee on Shale Gas Wells," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 107-153.
    2. Philipp M. Richter, 2013. "From Boom to Bust?: A Critical Look at US Shale Gas Projections," Discussion Papers of DIW Berlin 1338, DIW Berlin, German Institute for Economic Research.
    3. Muhammad Atif Iqbal & Reza Rezaee, 2020. "Porosity and Water Saturation Estimation for Shale Reservoirs: An Example from Goldwyer Formation Shale, Canning Basin, Western Australia," Energies, MDPI, vol. 13(23), pages 1-13, November.
    4. Liuyang Yao & Dangchen Sui & Xiaotong Liu & Hui Fan, 2020. "The Psychological Process of Residents’ Acceptance of Local Shale Gas Exploitation in China," IJERPH, MDPI, vol. 17(18), pages 1-20, September.
    5. Xi Yang & Alun Gu & Fujie Jiang & Wenli Xie & Qi Wu, 2020. "Integrated Assessment Modeling of China’s Shale Gas Resource: Energy System Optimization, Environmental Cobenefits, and Methane Risk," Energies, MDPI, vol. 14(1), pages 1-24, December.
    6. Yunna, Wu & Kaifeng, Chen & Yisheng, Yang & Tiantian, Feng, 2015. "A system dynamics analysis of technology, cost and policy that affect the market competition of shale gas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 235-243.
    7. Paweł Ziółkowski & Stanisław Głuch & Piotr Józef Ziółkowski & Janusz Badur, 2022. "Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture," Energies, MDPI, vol. 15(7), pages 1-39, April.
    8. Weber, Jeremy G. & Wang, Yongsheng & Chomas, Maxwell, 2016. "A quantitative description of state-level taxation of oil and gas production in the continental U.S," Energy Policy, Elsevier, vol. 96(C), pages 289-301.
    9. Cotton, Matthew & Barkemeyer, Ralf & Renzi, Barbara Gabriella & Napolitano, Giulio, 2019. "Fracking and metaphor: Analysing newspaper discourse in the USA, Australia and the United Kingdom," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
    10. Loucao, Sebastian, 2014. "External Effects of Hydraulic Fracturing: Risks and Welfare Considerations for Water Supply in Germany," FCN Working Papers 4/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Aug 2015.
    11. Cotton, Matthew & Rattle, Imogen & Van Alstine, James, 2014. "Shale gas policy in the United Kingdom: An argumentative discourse analysis," Energy Policy, Elsevier, vol. 73(C), pages 427-438.
    12. Stamford, Laurence & Azapagic, Adisa, 2014. "Life cycle environmental impacts of UK shale gas," Applied Energy, Elsevier, vol. 134(C), pages 506-518.
    13. Xu, Shang & Allen Klaiber, H., 2019. "The impact of new natural gas pipelines on emissions and fuel consumption in China," Resource and Energy Economics, Elsevier, vol. 55(C), pages 49-62.
    14. Charles F. Mason & Lucija A. Muehlenbachs & Sheila M. Olmstead, 2015. "The Economics of Shale Gas Development," Working Papers 2015.17, Fondazione Eni Enrico Mattei.
    15. Gail Krantzberg & Stephanie Theriault, 2017. "Would Implementing Responsible Care® Principles Improve the Safety of the Fracking Industry?," International Journal of Sciences, Office ijSciences, vol. 6(06), pages 55-62, June.
    16. Lenhard, L.G. & Andersen, S.M. & Coimbra-Araújo, C.H., 2018. "Energy-Environmental Implications Of Shale Gas Exploration In Paraná Hydrological Basin, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 56-69.
    17. Calderón, Andrés J. & Guerra, Omar J. & Papageorgiou, Lazaros G. & Reklaitis, Gintaras V., 2018. "Disclosing water-energy-economics nexus in shale gas development," Applied Energy, Elsevier, vol. 225(C), pages 710-731.
    18. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    19. Auping, Willem L. & Pruyt, Erik & de Jong, Sijbren & Kwakkel, Jan H., 2016. "The geopolitical impact of the shale revolution: Exploring consequences on energy prices and rentier states," Energy Policy, Elsevier, vol. 98(C), pages 390-399.
    20. Yao, Liuyang & Sui, Bo, 2020. "Heterogeneous preferences for shale water management: Evidence from a choice experiment in Fuling shale gas field, southwest China," Energy Policy, Elsevier, vol. 147(C).
    21. Baranzelli, Claudia & Vandecasteele, Ine & Ribeiro Barranco, Ricardo & Mari i Rivero, Ines & Pelletier, Nathan & Batelaan, Okke & Lavalle, Carlo, 2015. "Scenarios for shale gas development and their related land use impacts in the Baltic Basin, Northern Poland," Energy Policy, Elsevier, vol. 84(C), pages 80-95.
    22. Li, Boying & Zheng, Mingbo & Zhao, Xinxin & Chang, Chun-Ping, 2021. "An assessment of the effect of partisan ideology on shale gas production and the implications for environmental regulations," Economic Systems, Elsevier, vol. 45(3).
    23. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2015. "Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China," Energy, Elsevier, vol. 86(C), pages 335-343.
    24. Eleanor Stephenson & Karena Shaw, 2013. "¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    25. Lozano Maya, Juan Roberto, 2013. "The United States experience as a reference of success for shale gas development: The case of Mexico," Energy Policy, Elsevier, vol. 62(C), pages 70-78.
    26. Rabnawaz Khan, 2021. "Beta decoupling relationship between CO2 emissions by GDP, energy consumption, electricity production, value-added industries, and population in China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-22, April.
    27. Amedeo Argentiero, Tarek Atalla, Simona Bigerna, Silvia Micheli, and Paolo Polinori, 2017. "Comparing Renewable Energy Policies in EU-15, U.S. and China: A Bayesian DSGE Model," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    28. Raimi, Daniel, 2019. "The Greenhouse Gas Impacts of Increased US Oil and Gas Production," RFF Working Paper Series 19-03, Resources for the Future.
    29. Martínez-Espiñeira, Roberto & García-Valiñas, María Á. & Matesanz, David, 2019. "Public Attitudes towards Hydraulic Fracturing in Western Newfoundland," Energy Economics, Elsevier, vol. 84(C).
    30. Absar, Syeda Mariya & McManamay, Ryan A. & Preston, Benjamin L. & Taylor, Adam M., 2021. "Bridging global socioeconomic scenarios with policy adaptations to examine energy-water tradeoffs," Energy Policy, Elsevier, vol. 149(C).
    31. Liebensteiner, Mario & Wrienz, Matthias, 2020. "Do Intermittent Renewables Threaten the Electricity Supply Security?," Energy Economics, Elsevier, vol. 87(C).
    32. Liu, Jianye & Li, Zuxin & Luo, Dongkun & Duan, Xuqiang & Liu, Ruolei, 2020. "Shale gas production in China: A regional analysis of subsidies and suggestions for policy," Utilities Policy, Elsevier, vol. 67(C).
    33. Fan, Jing-Li & Kong, Ling-Si & Zhang, Xian, 2018. "Synergetic effects of water and climate policy on energy-water nexus in China: A computable general equilibrium analysis," Energy Policy, Elsevier, vol. 123(C), pages 308-317.
    34. Darrick Evensen & Christopher Clarke & Richard Stedman, 2014. "A New York or Pennsylvania state of mind: social representations in newspaper coverage of gas development in the Marcellus Shale," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(1), pages 65-77, March.
    35. Wen Li & Yuxi Liu & Siqi Xiao & Yu Zhang & Lihe Chai, 2018. "An Investigation of the Underlying Evolution of Shale Gas Research’s Domain Based on the Co-Word Network," Sustainability, MDPI, vol. 10(1), pages 1-23, January.
    36. Harrison Fell & Daniel T. Kaffine, 2018. "The Fall of Coal: Joint Impacts of Fuel Prices and Renewables on Generation and Emissions," American Economic Journal: Economic Policy, American Economic Association, vol. 10(2), pages 90-116, May.
    37. Knudsen, Brage Rugstad & Foss, Bjarne, 2017. "Shale-gas wells as virtual storage for supporting intermittent renewables," Energy Policy, Elsevier, vol. 102(C), pages 142-144.
    38. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Sualp, M. Nedim, 2016. "How did the US economy react to shale gas production revolution? An advanced time series approach," Energy, Elsevier, vol. 116(P1), pages 963-977.
    39. Yang, Xianyu & Cai, Jihua & Jiang, Guosheng & Xie, Jingyu & Shi, Yanping & Chen, Shuya & Yue, Ye & Yu, Lang & He, Yichao & Xie, Kunzhi, 2020. "Nanoparticle plugging prediction of shale pores: A numerical and experimental study," Energy, Elsevier, vol. 208(C).
    40. Maamoun, Nada & Kennedy, Ryan & Jin, Xiaomeng & Urpelainen, Johannes, 2020. "Identifying coal-fired power plants for early retirement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).

  11. Lamadrid, Alberto J. & Mount, Tim, 2012. "Ancillary services in systems with high penetrations of renewable energy sources, the case of ramping," Energy Economics, Elsevier, vol. 34(6), pages 1959-1971.

    Cited by:

    1. Dhruv Suri & Jacques de Chalendar & Ines Azevedo, 2024. "What are the real implications for $CO_2$ as generation from renewables increases?," Papers 2408.05209, arXiv.org.
    2. Lamadrid, Alberto J. & Maneevitjit, Surin & Mount, Timothy D., 2016. "The economic value of transmission lines and the implications for planning models," Energy Economics, Elsevier, vol. 57(C), pages 1-15.
    3. Daniel Felix Ahelegbey & Emmanuel Senyo Fianu & Luigi Grossi, 2020. "Modeling Risk Contagion in the Italian Zonal Electricity Market," DEM Working Papers Series 182, University of Pavia, Department of Economics and Management.
    4. Lisi, Francesco & Grossi, Luigi & Quaglia, Federico, 2023. "Evaluation of Cost-at-Risk related to the procurement of resources in the ancillary services market. The case of the Italian electricity market," Energy Economics, Elsevier, vol. 121(C).
    5. Moarefdoost, M. Mohsen & Lamadrid, Alberto J. & Zuluaga, Luis F., 2016. "A robust model for the ramp-constrained economic dispatch problem with uncertain renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 310-325.
    6. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    7. Kumar, Abhishek & Meena, Nand K. & Singh, Arvind R. & Deng, Yan & He, Xiangning & Bansal, R.C. & Kumar, Praveen, 2019. "Strategic integration of battery energy storage systems with the provision of distributed ancillary services in active distribution systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Chattopadhyay, Deb, 2014. "Modelling renewable energy impact on the electricity market in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 9-22.
    9. Nikolakakis, Thomas & Chattopadhyay, Deb & Bazilian, Morgan, 2017. "A review of renewable investment and power system operational issues in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 650-658.
    10. Godoy-González, Diego & Gil, Esteban & Gutiérrez-Alcaraz, Guillermo, 2020. "Ramping ancillary service for cost-based electricity markets with high penetration of variable renewable energy," Energy Economics, Elsevier, vol. 85(C).
    11. Majzoobi, Alireza & Khodaei, Amin, 2017. "Application of microgrids in providing ancillary services to the utility grid," Energy, Elsevier, vol. 123(C), pages 555-563.
    12. Alberto J. Lamadrid & Hao Lu & Timothy D. Mount, 2024. "A simple way to integrate distributed storage into a wholesale electricity market," Journal of Regulatory Economics, Springer, vol. 65(1), pages 27-63, June.

  12. Timothy D. Mount, Surin Maneevitjit, Alberto J. Lamadrid, Ray D. Zimmerman, and Robert J. Thomas, 2012. "The Hidden System Costs of Wind Generation in a Deregulated Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    See citations under working paper version above.

Chapters

    Sorry, no citations of chapters recorded.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ENE: Energy Economics (1) 2021-05-10

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Alberto J. Lamadrid should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.