IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp668-677.html
   My bibliography  Save this article

Turbine investment optimisation for energy recovery plants by utilising historic steam flow profiles

Author

Listed:
  • Venter, Philip van Zyl
  • Terblanche, Stephanus Esias
  • van Eldik, Martin

Abstract

Burnable off-gases generated in engineering process plants are regularly utilised as energy sources. A common use is for steam production, where excess steam is allocated to power generation turbines. Fluctuating off-gas productions may, however, result in power generation losses from turbine trips, due to insufficient steam. Numerous power co-generation investment models exist, which are typically based on cost minimisations or meeting energy demands. These models do not, however, incorporate plant-specific historic steam profiles and typically use average-based patterns for decision making. This paper presents a novel stochastic mixed integer linear programming model that utilises historic steam profiles to determine optimal turbine investments in terms of the net present value. A further advantage is the ability to investigate the investment and procurement of a, typically very expensive, supplementary energy resource to assist during low off-gas flow periods. The proposed model is solved to optimise over 10 years for an engineering factory seeking to invest into an energy recovery plant. Optimal results demonstrate how natural gas in a fluctuating off-gas environment can increase power generation profits and should be invested in, together with a 30 MW turbine. Furthermore, an average-based approach yields sub-optimal investments and overestimates the net present value beyond 22%.

Suggested Citation

  • Venter, Philip van Zyl & Terblanche, Stephanus Esias & van Eldik, Martin, 2018. "Turbine investment optimisation for energy recovery plants by utilising historic steam flow profiles," Energy, Elsevier, vol. 155(C), pages 668-677.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:668-677
    DOI: 10.1016/j.energy.2018.04.186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218308119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fazlollahi, Samira & Mandel, Pierre & Becker, Gwenaelle & Maréchal, Francois, 2012. "Methods for multi-objective investment and operating optimization of complex energy systems," Energy, Elsevier, vol. 45(1), pages 12-22.
    2. Henning, Dag, 1997. "MODEST—An energy-system optimisation model applicable to local utilities and countries," Energy, Elsevier, vol. 22(12), pages 1135-1150.
    3. Moarefdoost, M. Mohsen & Lamadrid, Alberto J. & Zuluaga, Luis F., 2016. "A robust model for the ramp-constrained economic dispatch problem with uncertain renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 310-325.
    4. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    5. Thorin, Eva & Brand, Heike & Weber, Christoph, 2005. "Long-term optimization of cogeneration systems in a competitive market environment," Applied Energy, Elsevier, vol. 81(2), pages 152-169, June.
    6. Moradi, Saeed & Khanmohammadi, Sohrab & Hagh, Mehrdad Tarafdar & Mohammadi-ivatloo, Behnam, 2015. "A semi-analytical non-iterative primary approach based on priority list to solve unit commitment problem," Energy, Elsevier, vol. 88(C), pages 244-259.
    7. Thollander, Patrik & Mardan, Nawzad & Karlsson, Magnus, 2009. "Optimization as investment decision support in a Swedish medium-sized iron foundry - A move beyond traditional energy auditing," Applied Energy, Elsevier, vol. 86(4), pages 433-440, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marshman, D.J. & Chmelyk, T. & Sidhu, M.S. & Gopaluni, R.B. & Dumont, G.A., 2010. "Energy optimization in a pulp and paper mill cogeneration facility," Applied Energy, Elsevier, vol. 87(11), pages 3514-3525, November.
    2. Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.
    3. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "Optimal design of distributed energy resource systems coupled with energy distribution networks," Energy, Elsevier, vol. 85(C), pages 433-448.
    4. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    5. Ashouri, Araz & Fux, Samuel S. & Benz, Michael J. & Guzzella, Lino, 2013. "Optimal design and operation of building services using mixed-integer linear programming techniques," Energy, Elsevier, vol. 59(C), pages 365-376.
    6. Merkel, Erik & Fehrenbach, Daniel & McKenna, Russell & Fichtner, Wolf, 2014. "Modelling decentralised heat supply: An application and methodological extension in TIMES," Energy, Elsevier, vol. 73(C), pages 592-605.
    7. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Decision rules for economic summer-shutdown of production units in large district heating systems," Applied Energy, Elsevier, vol. 208(C), pages 1128-1138.
    8. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming," Energy, Elsevier, vol. 84(C), pages 106-120.
    9. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "An MILP (mixed integer linear programming) model for optimal design of district-scale distributed energy resource systems," Energy, Elsevier, vol. 90(P2), pages 1901-1915.
    10. Fazlollahi, Samira & Becker, Gwenaelle & Ashouri, Araz & Maréchal, François, 2015. "Multi-objective, multi-period optimization of district energy systems: IV – A case study," Energy, Elsevier, vol. 84(C), pages 365-381.
    11. Porzio, Giacomo Filippo & Nastasi, Gianluca & Colla, Valentina & Vannucci, Marco & Branca, Teresa Annunziata, 2014. "Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork," Applied Energy, Elsevier, vol. 136(C), pages 1085-1097.
    12. Yokoyama, Ryohei & Shinano, Yuji & Taniguchi, Syusuke & Wakui, Tetsuya, 2019. "Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method," Energy, Elsevier, vol. 184(C), pages 45-57.
    13. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    14. Zhigang Duan & Yamin Yan & Xiaohan Yan & Qi Liao & Wan Zhang & Yongtu Liang & Tianqi Xia, 2017. "An MILP Method for Design of Distributed Energy Resource System Considering Stochastic Energy Supply and Demand," Energies, MDPI, vol. 11(1), pages 1-23, December.
    15. Ashouri, Araz & Petrini, Flavio & Bornatico, Raffaele & Benz, Michael J., 2014. "Sensitivity analysis for robust design of building energy systems," Energy, Elsevier, vol. 76(C), pages 264-275.
    16. Jayasekara, Saliya & Halgamuge, Saman K. & Attalage, Rahula A. & Rajarathne, Rohitha, 2014. "Optimum sizing and tracking of combined cooling heating and power systems for bulk energy consumers," Applied Energy, Elsevier, vol. 118(C), pages 124-134.
    17. Keirstead, James & Samsatli, Nouri & Shah, Nilay & Weber, Céline, 2012. "The impact of CHP (combined heat and power) planning restrictions on the efficiency of urban energy systems," Energy, Elsevier, vol. 41(1), pages 93-103.
    18. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    19. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    20. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:668-677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.