IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp934-947.html
   My bibliography  Save this article

Redistribution effects of energy and climate policy: The electricity market

Author

Listed:
  • Hirth, Lion
  • Ueckerdt, Falko

Abstract

Energy and climate policies are usually seen as measures to internalize externalities. However, as a side effect, the introduction of these policies redistributes wealth between consumers and producers, and within these groups. While redistribution is seldom the focus of the academic literature in energy economics, it plays a central role in public debates and policy decisions. This paper compares the distributional effects of two major electricity policies: support schemes for renewable energy sources, and CO2 pricing. We find that the redistribution effects of both policies are large, and they work in opposed directions. While renewables support transfers wealth from producers to consumers, carbon pricing does the opposite. More specifically, we show that moderate amounts of wind subsidies can increase consumer surplus, even if consumers bear the subsidy costs. CO2 pricing, in contrast, increases aggregated producer surplus, even without free allocation of emission allowances; however, not all types of producers benefit. These findings are derived from an analytical model of electricity markets, and a calibrated numerical model of Northwestern Europe. Our findings imply that if policy makers want to avoid large redistribution they might prefer a mix of policies, even if CO2 pricing alone is the first-best climate policy in terms of allocative efficiency.

Suggested Citation

  • Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:934-947
    DOI: 10.1016/j.enpol.2013.07.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513006988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.07.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rathmann, M., 2007. "Do support systems for RES-E reduce EU-ETS-driven electricity prices?," Energy Policy, Elsevier, vol. 35(1), pages 342-349, January.
    2. Yihsu Chen & Jos Sijm & Benjamin Hobbs & Wietze Lise, 2008. "Implications of CO 2 emissions trading for short-run electricity market outcomes in northwest Europe," Journal of Regulatory Economics, Springer, vol. 34(3), pages 251-281, December.
    3. O'Mahoney, Amy & Denny, Eleanor, 2011. "The Merit Order Effect of Wind Generation on the Irish Electricity Market," MPRA Paper 56043, University Library of Munich, Germany.
    4. Lion Hirth & Inka Ziegenhagen, 2013. "Control Power and Variable Renewables A Glimpse at German Data," Working Papers 2013.46, Fondazione Eni Enrico Mattei.
    5. Jos Sijm & Karsten Neuhoff & Yihsu Chen, 2006. "CO 2 cost pass-through and windfall profits in the power sector," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 49-72, January.
    6. Unger, Thomas & Ahlgren, Erik O., 2005. "Impacts of a common green certificate market on electricity and CO2-emission markets in the Nordic countries," Energy Policy, Elsevier, vol. 33(16), pages 2152-2163, November.
    7. Richard Green, 2005. "Electricity and Markets," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 67-87, Spring.
    8. Karsten Neuhoff & Stefan Bach & Jochen Diekmann & Martin Beznoska & Tarik El-Laboudy, 2013. "Distributional Effects of Energy Transition: Impacts of Renewable Electricity Support in Germany," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    9. Kim Keats Martinez & Karsten Neuhoff, 2005. "Allocation of carbon emission certificates in the power sector: how generators profit from grandfathered rights," Climate Policy, Taylor & Francis Journals, vol. 5(1), pages 61-78, January.
    10. Dallas Burtraw & Karen Palmer, 2008. "Compensation rules for climate policy in the electricity sector," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 819-847.
    11. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    12. Bode, Sven, 2006. "On multi-period emissions trading in the electricity sector," HWWA Discussion Papers 343, Hamburg Institute of International Economics (HWWA).
    13. Richard Green & Nicholas Vasilakos, 2011. "The Long-term Impact of Wind Power on Electricity Prices and Generating Capacity," Discussion Papers 11-09, Department of Economics, University of Birmingham.
    14. Christoph Böhringer & Knut Rosendahl, 2010. "Green promotes the dirtiest: on the interaction between black and green quotas in energy markets," Journal of Regulatory Economics, Springer, vol. 37(3), pages 316-325, June.
    15. Bushnell, James, 2010. "Building Blocks: Investment in Renewable and Non-Renewable Technologies," Staff General Research Papers Archive 31546, Iowa State University, Department of Economics.
    16. Carolyn Fischer, 2010. "Renewable Portfolio Standards: When Do They Lower Energy Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 101-120.
    17. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
    18. Timothy D. Mount, Surin Maneevitjit, Alberto J. Lamadrid, Ray D. Zimmerman, and Robert J. Thomas, 2012. "The Hidden System Costs of Wind Generation in a Deregulated Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    19. Munksgaard, Jesper & Morthorst, Poul Erik, 2008. "Wind power in the Danish liberalised power market--Policy measures, price impact and investor incentives," Energy Policy, Elsevier, vol. 36(10), pages 3940-3947, October.
    20. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    21. Burtraw, Dallas & Palmer, Karen & Bharvirkar, Ranjit & Paul, Anthony, 2002. "The Effect on Asset Values of the Allocation of Carbon Dioxide Emission Allowances," The Electricity Journal, Elsevier, vol. 15(5), pages 51-62, June.
    22. Tsao, C.-C. & Campbell, J.E. & Chen, Yihsu, 2011. "When renewable portfolio standards meet cap-and-trade regulations in the electricity sector: Market interactions, profits implications, and policy redundancy," Energy Policy, Elsevier, vol. 39(7), pages 3966-3974, July.
    23. Olsina, Fernando & Roscher, Mark & Larisson, Carlos & Garces, Francisco, 2007. "Short-term optimal wind power generation capacity in liberalized electricity markets," Energy Policy, Elsevier, vol. 35(2), pages 1257-1273, February.
    24. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    25. MacCormack, John & Hollis, Aidan & Zareipour, Hamidreza & Rosehart, William, 2010. "The large-scale integration of wind generation: Impacts on price, reliability and dispatchable conventional suppliers," Energy Policy, Elsevier, vol. 38(7), pages 3837-3846, July.
    26. Bode, Sven, 2006. "Multi-period emissions trading in the electricity sector--winners and losers," Energy Policy, Elsevier, vol. 34(6), pages 680-691, April.
    27. Gil, Hugo A. & Gomez-Quiles, Catalina & Riquelme, Jesus, 2012. "Large-scale wind power integration and wholesale electricity trading benefits: Estimation via an ex post approach," Energy Policy, Elsevier, vol. 41(C), pages 849-859.
    28. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    29. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    2. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    3. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    4. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    5. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    7. Anke, Carl-Philipp & Hobbie, Hannes & Schreiber, Steffi & Möst, Dominik, 2020. "Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies," Energy Policy, Elsevier, vol. 144(C).
    8. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    9. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    10. Thure Traber & Claudia Kemfert, 2015. "Renewable Energy Support in Germany: Surcharge Development and the Impact of a Decentralized Capacity Mechanism," Discussion Papers of DIW Berlin 1452, DIW Berlin, German Institute for Economic Research.
    11. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    12. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    13. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    14. Sébastien Phan & Fabien Roques, 2015. "Is the depressive effect of renewables on power prices contagious? A cross border econometric analysis," Cambridge Working Papers in Economics 1527, Faculty of Economics, University of Cambridge.
    15. Nicolosi, Marco, 2011. "The impact of RES-E policy setting on integration effects - A detailed analysis of capacity expansion and dispatch results," MPRA Paper 31835, University Library of Munich, Germany.
    16. Kaller, Alexander & Bielen, Samantha & Marneffe, Wim, 2018. "The impact of regulatory quality and corruption on residential electricity prices in the context of electricity market reforms," Energy Policy, Elsevier, vol. 123(C), pages 514-524.
    17. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    18. Espinosa, María Paz & Pizarro-Irizar, Cristina, 2018. "Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 902-914.
    19. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    20. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.

    More about this item

    Keywords

    Redistribution; Emission trading; Renewable energy;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:934-947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.